One-step-installation of offshore wind turbine on large-scale bucket-top-bearing bucket foundation

2013 ◽  
Vol 19 (3) ◽  
pp. 188-194 ◽  
Author(s):  
Hongyan Ding ◽  
Jijian Lian ◽  
Aidong Li ◽  
Puyang Zhang
Author(s):  
Hongyan Ding ◽  
Lingqian Meng ◽  
Puyang Zhang ◽  
Conghuan Le

With continuous innovation and development of the wind power technology, the offshore wind turbine is rapidly developing. However, it also has difficulties in construction at sea and other shortcomings. One-step installation technique of the composite bucket foundation (CBF) provides a new way to solve the difficulties in the construction of offshore wind turbine at sea. And the integrated floating transport technique of the offshore CBF is the key link in the one-step installation technique. In this paper, by controlling three factors, such as draft, wave height and speed, the contact force between the vessel and CBF in the integrated floating transportation process is studied with experimental method. The relationship and the effect between the three factors and the contact force is analyzed. The experimental results are collected and analyzed to verify the safety of the integrated floating transportation of offshore CBF.


2021 ◽  
Vol 235 ◽  
pp. 109387
Author(s):  
Jijian Lian ◽  
Junni Jiang ◽  
Xiaofeng Dong ◽  
Haijun Wang ◽  
Huan Zhou

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 882 ◽  
Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le ◽  
Yaohua Guo

The composite bucket foundation (CBF) for offshore wind turbines is the basis for a one-step integrated transportation and installation technique, which can be adapted to the construction and development needs of offshore wind farms due to its special structural form. To transport and install bucket foundations together with the upper portion of offshore wind turbines, a non-self-propelled integrated transportation and installation vessel was designed. In this paper, as the first stage of applying the proposed one-step integrated construction technique, the floating behavior during the transportation of CBF with a wind turbine tower for the Xiangshui wind farm in the Jiangsu province was monitored. The influences of speed, wave height, and wind on the floating behavior of the structure were studied. The results show that the roll and pitch angles remain close to level during the process of lifting and towing the wind turbine structure. In addition, the safety of the aircushion structure of the CBF was verified by analyzing the measurement results for the interaction force and the depth of the liquid within the bucket. The results of the three-DOF (degree of freedom) acceleration monitoring on the top of the test tower indicate that the wind turbine could meet the specified acceleration value limits during towing.


Sign in / Sign up

Export Citation Format

Share Document