The Crack Investigation and Analysis of Frame Structure Subjected to Lateral Loading

2011 ◽  
Vol 71-78 ◽  
pp. 1885-1888
Author(s):  
Su Guo Wang ◽  
Chen Yu Yang

The crack development of two cast-in-situ RC frame structures subjected to lateral loading was investigated. Then the develop reasons were analyzed. The investigation indicates that the existence of monolithic slab in reinforced concrete frame structure overstrengthened the actual flexural capability of longitudinal beams. Therefore, the participation of monolithic slabs should be made in consideration in structural design to achieve the strong column weak beam philosophy.

Author(s):  
Taochun Yang ◽  
Yanjun Li ◽  
Xiaohui Zhai

In order to study the degradation law and seismic performance of reinforced concrete frame structure with the extension of service time under normal service environment, the multi-scale modeling of corroded reinforced concrete frame is carried out by using the general finite element analysis software ABAQUS. The correctness of the multi-scale modeling method is verified by the experimental data of corroded reinforced concrete members and single frame. The pushover analysis and elastic-plastic time history analysis of a four story reinforced concrete frame structure are carried out by using a multi-scale model. Then the seismic response and damage of RC frame structures with different service time are compared. The experimental results show that the established seismic performance model of reinforced concrete frame structure is more practical in practical application and can meet the research requirements.


2010 ◽  
Vol 163-167 ◽  
pp. 2415-2419 ◽  
Author(s):  
Hong Sheng Zhao ◽  
Hui Ji

Using the conventional structural design methods, the design result is usually not the most economical and the most reasonable. While, using the single target structural optimization design method, duo to the only one target function to be optimized, the design result often can not meet with the multiple requirements of structural designing, furthermore its optimizing efficiency is low. So its application is limited. This paper proposes multi-target earthquake-resistant optimization design method for reinforced concrete frame structure under earthquake loading. In the optimization design approach, the ductility and cost which are two factors contradictory each other in structure designing are simultaneously taken as the target functions, and the function relation formula between them has been established, giving simultaneous consideration to the structural economy, safety and practicability. Using this design approach, the optimum cross-sectional dimensions, with the largest ductility and the lowest cost, of the reinforced concrete frame structure which is optimized under earthquake loading, can be obtained by computer. The practical examples of structure design, which have been optimized by using this approach, show that the cost of construction has been cut down by about 10% comparing with the conventional designing. The optimization process presented in this paper conforms entirely to the China national standards: “Code for Design of Reinforced Concrete Structures” (GB50010-2002) and “Code for Earthquake-resistant Design of Buildings” (GB50011). The theory and methods presented in this paper, having not only their theory meanings but their practical values, will be helpful for the structural design engineers and the researchers.


2013 ◽  
Vol 477-478 ◽  
pp. 671-674
Author(s):  
Fei Wang

This paper take a reinforced concrete frame structures storey-adding transformation as an example, analysising and calculating the whole structure adding layer before and after, then discussing the reinforcing measures of the column during the design of this processing. The using condition shows that reinforcing measures is very safe and effective that the project has adopted, and it can serve as a reference for the design of similar projects.


2012 ◽  
Vol 204-208 ◽  
pp. 869-871
Author(s):  
Cai Hua Wang ◽  
Hui Jian Li ◽  
Jian Feng Wu

The multi-storey reinforced concrete frame structure used lead rubber pad as the base isolation device. The paper had modal analysis of base-isolated multi-storey reinforced concrete frame structure using the ANSYS software. Comparing the frequency and vibration mode before and after isolation under El-Centro wave, It concluded the leader rubber pad have seismic isolation effect for multi-storey reinforced concrete frame structure .


Sign in / Sign up

Export Citation Format

Share Document