Experimental and modeling study on the progressive collapse resistance of a reinforced concrete frame structure under a middle column removal scenario

Author(s):  
Qiang Zhang ◽  
Yaozhuang Li
2011 ◽  
Vol 71-78 ◽  
pp. 871-875
Author(s):  
Yong Kang Zheng ◽  
Jin Gang Xiong ◽  
Zhao Qiang Wu ◽  
Yi Nong He

The progressive collapse of the frame structure is simulated with testing a 1/3 scale, 4×2-bay and 3-storey reinforced concrete spatial frame in this paper. The experimental model was designed according to the non-seismic resistance demand, and the middle-side column of the bottom floor was replaced by a mechanical jack to simulate its initial local damage. Based on the experimental results, the applied load process and the load transferring mechanism of the model frame are analyzed. The progressive collapse-resisting performance of reinforced concrete frames with non-seismic demand are obtained.


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


Sign in / Sign up

Export Citation Format

Share Document