The Analysis of Lateral Displacement Target of Unstiffened Steel Plate Shear Wall Based on the Performance Designing

2011 ◽  
Vol 71-78 ◽  
pp. 3666-3672
Author(s):  
Yong Jiu Shi ◽  
Jian Xu ◽  
Guo Xin Dai ◽  
Yuan Qing Wang

A typical three-story unstiffened Steel Plate Shear Wall (SPSW) finite element model was established. Systematic parameters analysis of the development and changing process of the lateral stiffness and shear capacity was mainly carried on the middle standard layer. The result shows that the lateral stiffness of thin SPSW has been always in decline and has a higher shear capacity after buckling. According to lots of analysis data and different stages of lateral control targets in the new revised seismic design code for performance designing, the lateral limits of the SPSW were respectively qualified under wind loads and frequent earthquake.The test verification was also proposed to verify the restrictive lateral limits so as to supply a scientific basis for the preparation of SPSW design method.

2009 ◽  
Vol 47 (8-9) ◽  
pp. 827-835 ◽  
Author(s):  
Cem Topkaya ◽  
Mehmet Atasoy

1999 ◽  
Vol 26 (5) ◽  
pp. 549-563 ◽  
Author(s):  
A Schumacher ◽  
G Y Grondin ◽  
G L Kulak

The behaviour under cyclic loading of unstiffened steel plate shear wall panels at their connection to the bounding beams and columns was investigated on full-size panel corner details. Four different infill panel connection details were tested to examine and compare their response to quasi-static cyclic loading. The load versus displacement response of the details showed gradual and stable deterioration at higher loads. The formation of tears in the connection details did not result in a loss of load-carrying capacity. In addition to the experimental program, a finite element model was developed to model the behaviour of one of the infill plate corner connection specimens. Results from the analysis showed that the finite element method can be used to obtain the load versus displacement behaviour of an infill panel-to-boundary member arrangement.Key words: cyclic loading, hysteresis, shear wall, steel, welded connection.


2021 ◽  
Vol 86 (786) ◽  
pp. 1213-1223
Author(s):  
Jumpei YASUNAGA ◽  
Takuya UEKI ◽  
Yukio MURAKAMI ◽  
Junichiro ONO ◽  
Seiya KIMURA ◽  
...  

2013 ◽  
Vol 351-352 ◽  
pp. 219-222
Author(s):  
Xiao Tong Peng ◽  
Ying Ying Hou ◽  
Lei Xia

The semi-rigid steel frame-composite steel plate shear wall structure (SCSW) effectively improves the lateral stiffness of shear wall, making it possible to use the semi-rigid joint. In order to study the plastic failure mechanism of SCSW, a plastic model is established, in which the effects of the rotations of semi-rigid joints and yield deformations of infill steel walls on the energy consumption are considered. Based on that, a design method for the lateral ultimate strength is put forward and a nonlinear FEM model is setup using ANSYS. Through the comparison between plastic analysis results with the finite element results, it is shown that the plastic analysis method is feasible and has a safe redundancy.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaomeng Zhang ◽  
Qingying Ren ◽  
Jiaqi Wang ◽  
Ziao Liu ◽  
Xiao Yang

This paper presents a new type of double-steel-plate shear wall. Through the finite element software, the stress and plastic strain of steel plate and concrete in different loading stages of the wall are analyzed, the mechanical properties and failure rules of the wall are revealed, and the failure mechanism of the wall is obtained. The comparison with the test results verifies the correctness of the finite element analysis. Through nonlinear finite element parameterization analysis, the composition of shear capacity of each composite wall is obtained. Based on the superposition theory, practical calculation formula of its shear capacity is given, and through a comparative analysis with simulation test results, the goodness-of-fit is satisfying.


2021 ◽  
Vol 2021 ◽  
pp. 1-21 ◽  
Author(s):  
Yang Li ◽  
Xiaofeng Zhao ◽  
Ping Tan ◽  
Fulin Zhou ◽  
Jin Jiang

In this study, in a novel buckling-restrained steel plate shear wall (BRSPSW) with out-of-plane deformation spaces, angle steel stiffeners have been installed so as to create gaps between the steel plate and the covering concrete slabs. A finite element model has been developed to analyse the effect of the gap. According to the finite element results, seismic performance of this novel BRSPSW has been tested under cyclic loading at the scale ratio of 1/3. The failure pattern, hysteretic characteristics, skeleton curve, equivalent stiffness, ductility, and energy dissipation have all been systematically analysed. A stiffened steel plate shear wall (SPSW) has also been tested in order to determine the differences between these two steel shear walls in load-carrying capability and the function and significance of the gap. The test results show that the novel BRSPSW does not only significantly enhance the ultimate bearing capacity, stiffness, ductility, and accumulated energy dissipation of the SPSW but also keep the steel plate basically intact at the end of the test. This can be attributed to the existence of the gaps between the infilled steel plate and the covering concrete slabs. The hysteretic characteristics and the strength and deformation characteristics of this novel BRSPSW have been simulated by using the finite element model, and the test results are in good agreement with the finite element results. Hence, the BRSPSW is an excellent steel plate shear wall to be used in high rise structure to resist horizontal loadings.


2018 ◽  
Vol 83 (743) ◽  
pp. 191-199 ◽  
Author(s):  
Jumpei YASUNAGA ◽  
Takuya UEKI ◽  
Yukio MURAKAMI ◽  
Junichiro ONO ◽  
Seiya KIMURA ◽  
...  

2019 ◽  
Vol 9 (5) ◽  
pp. 907 ◽  
Author(s):  
Zhanzhong Yin ◽  
Hui Zhang ◽  
Wenwei Yang

A steel plate shear wall often uses partially encased composite (PEC) columns instead of edge frame columns. Such a steel plate shear wall not only bears the gravity load of the structure and resists the bending moment caused by lateral force by taking advantage of the high bearing capacity and bending stiffness of PEC columns, but also effectively anchors with the frame column to counteract the tension field generated by the steel plate. Therefore, the performance of the steel plate shear wall after buckling can be fully exerted and the seismic performance of the structure can be improved. In order to investigate the seismic performance of the structure, a 1/3-scale specimen test of steel plate shear wall with PEC columns is designed and fabricated, and a finite element model is established with the same size of test. It is found that the test and simulation results are in good agreement, which confirms the reliability of the simulation. Subsequently, 20 models with different parameters of steel plate shear wall with PEC columns are analyzed using ABAQUS. Finally, the failure mode, hysteretic behavior, skeleton curve, and bearing capacity of steel plate shear wall with PEC columns are obtained. The results show that PEC columns have a good anchoring effect on the diagonal tension field and can fully exert the plasticity of the infill steel plate, so that steel plate shear wall with PEC columns has superior seismic performance. Experiments also reveal that the crack type of damages appear in a steel plate shear wall with PEC columns, and, as a future work, the authors will explore the use of structural health monitoring methods, such as piezoceramic transducer-based method, to monitor such cracks.


Sign in / Sign up

Export Citation Format

Share Document