scholarly journals Design Method of The New Damping Energy Dissipation Corrugated Steel Plate Shear Wall System

Author(s):  
Wen Xu Duan ◽  
Xiao-Tong Peng ◽  
Ao Yang ◽  
Chen Lin
2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2021 ◽  
Vol 86 (786) ◽  
pp. 1213-1223
Author(s):  
Jumpei YASUNAGA ◽  
Takuya UEKI ◽  
Yukio MURAKAMI ◽  
Junichiro ONO ◽  
Seiya KIMURA ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 1450-1455 ◽  
Author(s):  
Wan Lin Cao ◽  
Wen Jiang Zhang ◽  
Jian Wei Zhang ◽  
Hong Ying Dong

In view of the proposal of embedded steel plate concrete shear wall with concrete filled steel tube columns which contains a new kind shear connector of tie-bars through the circular holes linking concrete layers on both sides of the plate. In order to prove the seismic performance of walls with circular holes on the plate, three steel plate shear wall specimens, including the plate without holes bolted with columns, welded with columns, and the perforated plate welded with columns, were tested under cyclic loading. According to the results, the load-bearing capacity, ductility, energy dissipation, hysteretic behavior and failure phenomena were analyzed. It is showed that the load-bearing capacity of the three specimens were quite close. However, the wall with perforated steel plate has better ductility, energy dissipation and hysteretic behavior. So, it is an effective way to improve the seismic performance of walls by means of embedded perforated steel plate instead of ordinary ones.


2011 ◽  
Vol 71-78 ◽  
pp. 3666-3672
Author(s):  
Yong Jiu Shi ◽  
Jian Xu ◽  
Guo Xin Dai ◽  
Yuan Qing Wang

A typical three-story unstiffened Steel Plate Shear Wall (SPSW) finite element model was established. Systematic parameters analysis of the development and changing process of the lateral stiffness and shear capacity was mainly carried on the middle standard layer. The result shows that the lateral stiffness of thin SPSW has been always in decline and has a higher shear capacity after buckling. According to lots of analysis data and different stages of lateral control targets in the new revised seismic design code for performance designing, the lateral limits of the SPSW were respectively qualified under wind loads and frequent earthquake.The test verification was also proposed to verify the restrictive lateral limits so as to supply a scientific basis for the preparation of SPSW design method.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1516-1519
Author(s):  
Yong Song Shao ◽  
Feng Ru Shao

Due to mechanical performances of brace and steel plate, mechanical properties of semi-rigid joints and its construction and installation, semi-rigid steel frame-braced steel plate shear wall system is proposed. Nonlinear static analysis with parameters (thickness of plate, type of brace, size of brace and the ratio of span to height) changed of a single-span and single-floor semi-rigid steel frame-braced steel plate shear wall system illustrates that braced steel plate shear walls contributes obviously to bearing capacity and lateral rigidity of semi-rigid steel frame. Also, the finite element analysis (by ANSYS) show that semi-rigid steel frame-braced steel plate shear wall system has excellent ductility.


2013 ◽  
Vol 351-352 ◽  
pp. 219-222
Author(s):  
Xiao Tong Peng ◽  
Ying Ying Hou ◽  
Lei Xia

The semi-rigid steel frame-composite steel plate shear wall structure (SCSW) effectively improves the lateral stiffness of shear wall, making it possible to use the semi-rigid joint. In order to study the plastic failure mechanism of SCSW, a plastic model is established, in which the effects of the rotations of semi-rigid joints and yield deformations of infill steel walls on the energy consumption are considered. Based on that, a design method for the lateral ultimate strength is put forward and a nonlinear FEM model is setup using ANSYS. Through the comparison between plastic analysis results with the finite element results, it is shown that the plastic analysis method is feasible and has a safe redundancy.


Sign in / Sign up

Export Citation Format

Share Document