The Forceanalysis of the Vertical Axis Wind Turbine Arms

2011 ◽  
Vol 71-78 ◽  
pp. 4794-4797
Author(s):  
Zhong Guo Bian ◽  
Cheng Xian Fan ◽  
Shu Qin Liu

The strain on the arms of the H-VAWT is complex. The article makes analysis on the moment of inertia and maximum stress of the H-VAWT arms, and calculation is made on an equilateral triangle and a rhombus which has the same perimeter with the former. The article provides a method for analyzing the designation of H-VAWT.

Author(s):  
Chien-Chang Chen ◽  
Cheng-Hsiung Kuo

This study employs the commercialized computational fluid dynamics software (Ansys/Fluent), with the user’s defined technique, to simulate the unsteady flow structures around the small-size vertical axis wind turbines (VAWT) with three straight blades. This study addresses the effects of the collective variations of the pitch angle (within ± 10°) on the performance of the VAWT system. The results of the transient (acceleration) stage will be employed to evaluate the self-starting ability. While the vertical axis wind turbine (VAWT) reaches a steady rotating stage, the detailed flow structures, the vorticity fields, the pressure distributions around, and the forces on the airfoils at various azimuthal positions will be addressed. For the blades with a negative pitch angle (θ = −10°), has the peak value of the moment coefficient within one revolution is the largest which will provide the largest starting torque to drive the VAWT system more easily. However, in this case, the moment coefficients are negative within some part of the period. This cancels part of the positive moment within one revolution, thus the efficiency is reduced at this pitch angle. For the case with positive pitch angle (θ = 10°), the area under the moment coefficient curve is the smallest and the time elapse of large moment coefficient is relatively short. Thus the efficiency and the starting torque are the lowest among thee pitch angles.


2007 ◽  
Vol 2007.2 (0) ◽  
pp. 361-362
Author(s):  
In-Seung KANG ◽  
Tomoya AZUI ◽  
Masaru KATO ◽  
Yutaka HARA ◽  
Tetuya KAWAMURA ◽  
...  

2009 ◽  
Vol 2009 (0) ◽  
pp. 391-392
Author(s):  
Koichi Hara ◽  
Yutaka Hara ◽  
Yoshiki Shimoda ◽  
Yuya Sugimoto ◽  
Tsutomu Hayashi

Author(s):  
H. Flores-Saldaña ◽  
A. Gallegos-Muñoz ◽  
N. C. Uzarraga-Rodriguez ◽  
V. H. Rangel-Hernandez

This work presents a numerical analysis of a four-bladed Rooftop vertical axis wind turbine (VAWT). The effects generated on the performance of turbine by the overlap variation between blades of wind rotor were analyzed. The numerical simulations were developed using commercial software based on Computational Fluid Dynamic (CFD). Each one of the models generated was built in a 3D computational model. A sliding mesh model (SMM) capability was used to present in dimensionless form the moment coefficient and power coefficient of the wind turbine based on the relationship between wind speed and rotor rotational speed. The results show that the aerodynamic performance is better with overlap between rotor blades, resulting in a significant increase in the moment coefficient and power coefficient. Having that in the cases of four-bladed Rooftop rotor with overlap both coefficients increase about 29% comparing with four-bladed Rooftop rotor without overlap between blades.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2017 ◽  
Author(s):  
Prof. R.K. Bhoyar ◽  
Prof. S.J. Bhadang ◽  
Prof. N.Z. Adakane ◽  
Prof. N.D. Pachkawade

Sign in / Sign up

Export Citation Format

Share Document