Simulation on Performances of Vertical Axis Wind Turbine

Author(s):  
Chien-Chang Chen ◽  
Cheng-Hsiung Kuo

This study employs the commercialized computational fluid dynamics software (Ansys/Fluent), with the user’s defined technique, to simulate the unsteady flow structures around the small-size vertical axis wind turbines (VAWT) with three straight blades. This study addresses the effects of the collective variations of the pitch angle (within ± 10°) on the performance of the VAWT system. The results of the transient (acceleration) stage will be employed to evaluate the self-starting ability. While the vertical axis wind turbine (VAWT) reaches a steady rotating stage, the detailed flow structures, the vorticity fields, the pressure distributions around, and the forces on the airfoils at various azimuthal positions will be addressed. For the blades with a negative pitch angle (θ = −10°), has the peak value of the moment coefficient within one revolution is the largest which will provide the largest starting torque to drive the VAWT system more easily. However, in this case, the moment coefficients are negative within some part of the period. This cancels part of the positive moment within one revolution, thus the efficiency is reduced at this pitch angle. For the case with positive pitch angle (θ = 10°), the area under the moment coefficient curve is the smallest and the time elapse of large moment coefficient is relatively short. Thus the efficiency and the starting torque are the lowest among thee pitch angles.

2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 393
Author(s):  
Unnikrishnan Divakaran ◽  
Ajith Ramesh ◽  
Akram Mohammad ◽  
Ratna Kishore Velamati

The energy crisis has forced researchers to look for various non-conventional energy sources. Wind energy is one of the potential sources, and researchers have invested resources in developing different kinds of wind turbines. Vertical axis wind turbines (VAWT) have received less attention than their horizontal-axis counterparts. A helical-bladed VAWT is preferred because it makes perfect sense as an improvement in design, as they have higher azimuth angles of power generation capabilities. This paper studies the effects of the helix angle of blades in the aerodynamic performance of VAWT using 3D numerical simulations. Three different helix angles of 60°, 90°, and 120° of a three-bladed VAWT operating across different tip speed ratios were studied. Turbulence is modelled using a four-equation transition SST k-ω model (shear stress transport). The 60° helical-bladed VAWT was found to be better performing in comparison with all other helical-bladed and straight-bladed VAWT. The ripple effects on the shaft are also analysed using a standard deviation plot of the moment coefficient generated by a single blade over one complete cycle of its rotation. It was observed that the greater the helix angle, the lower the standard deviation. The paper also tries to analyse the percentage of power generated by each quartile of flow and the contribution of each section of the blade. Ansys FLUENT was employed for the entire study. A comparative study between different helical-bladed VAWT and straight-bladed VAWT was carried out along with wake structure analysis and flow contours for a better understanding of the flow field.


Author(s):  
H. Flores-Saldaña ◽  
A. Gallegos-Muñoz ◽  
N. C. Uzarraga-Rodriguez ◽  
V. H. Rangel-Hernandez

This work presents a numerical analysis of a four-bladed Rooftop vertical axis wind turbine (VAWT). The effects generated on the performance of turbine by the overlap variation between blades of wind rotor were analyzed. The numerical simulations were developed using commercial software based on Computational Fluid Dynamic (CFD). Each one of the models generated was built in a 3D computational model. A sliding mesh model (SMM) capability was used to present in dimensionless form the moment coefficient and power coefficient of the wind turbine based on the relationship between wind speed and rotor rotational speed. The results show that the aerodynamic performance is better with overlap between rotor blades, resulting in a significant increase in the moment coefficient and power coefficient. Having that in the cases of four-bladed Rooftop rotor with overlap both coefficients increase about 29% comparing with four-bladed Rooftop rotor without overlap between blades.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


2021 ◽  
Vol 11 (3) ◽  
pp. 1033
Author(s):  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Pitch regulation plays a significant role in improving power performance and achieving output control in wind turbines. The present study focuses on a novel, pitch-regulated vertical axis wind turbine (VAWT) with inclined pitch axes. The effect of two pitch parameters (the fold angle and the incline angle) on the instantaneous aerodynamic forces and overall performance of a straight-bladed VAWT under a tip-speed ratio of 4 is investigated using an actuator line model, achieved in ANSYS Fluent software and validated by previous experimental results. The results demonstrate that the fold angle has an apparent influence on the angles of attack and forces of the blades, as well as the power output of the wind turbine. It is helpful to further study the dynamic pitch regulation and adaptable passive pitch regulation of VAWTs. Incline angles away from 90° lead to the asymmetric distribution of aerodynamic forces along the blade span, which results in an expected reduction of loads on the main shaft and the tower of VAWTs.


2018 ◽  
Author(s):  
Mateusz Jakubowski ◽  
Roman Starosta ◽  
Pawel Fritzkowski

2020 ◽  
pp. 0309524X2093513
Author(s):  
Simon A Prince ◽  
Carmine Badalamenti ◽  
Dimitar Georgiev

An experimental study is presented on the performance of a vertical axis wind turbine with variable blade geometry of the design developed by Austin Farrah. This is experimentally compared with the performance of a correspondingly sized Bach-type Savonius turbine using the same electrical generator and measurement instrumentation in a wind tunnel. Experiments were performed for Reynolds numbers, based on blade chord, in the range 5 × 103 to 1 × 105, and for blade settings between −40° and +40o. The study shows that for the tip speed ratios that have been investigated, the Farrah vertical axis wind turbine design can only marginally outperform a corresponding two-bladed Bach-type Savonius turbine and then only when its blades are set to 40° pitch angle. The presence of a small inner cylinder, which rotates with the turbine, does not enhance its performance due to the fact that it is immersed in an extensive column of relatively static air.


2012 ◽  
Vol 225 ◽  
pp. 338-343 ◽  
Author(s):  
J.J. Miau ◽  
S.Y. Liang ◽  
R.M. Yu ◽  
C.C. Hu ◽  
T.S. Leu ◽  
...  

The concept of pitch control has been implemented in the design of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results presented in this paper. As found, the method of variable pitch control outperforms the one of fixed pitch control. The present results show that the former can make remarkable improvement on the starting torque as well as the aerodynamic characteristics at low tip speed ratios.


2014 ◽  
Vol 529 ◽  
pp. 296-302 ◽  
Author(s):  
Wei Zuo ◽  
Shun Kang

The aerodynamic performance and the bypass flow field of a vertical axis wind turbine under self-starting are investigated using CFD simulations in this paper. The influence of pitch angle variations on the performance of the wind turbine during self-starting is presented. A two-dimensional model of the wind turbine with three blades is employed. A commercial software FlowVision is employed in this paper, which uses dynamic Cartesian grid. The SST turbulence model is used for turbulence modeling, which assumes the flow full turbulent. Based on the comparison between the computed time-dependent variations of the rotation speed with the experimental data, the time-dependent variations of the torque are presented. The characteristics of self-starting of the wind turbine are analyzed with the pitch angle of 0o、-2oand 2o. The influence of pitch angle variations on two-dimensional unsteady viscous flow field through velocity contours is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document