polishing fluid
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yang Ming ◽  
Xiang ming Huang ◽  
Dong dong Zhou ◽  
Qing Zeng ◽  
Hong yu Li

Abstract Shear thickening polishing technology using non-Newtonian polishing fluid is a low-cost, low-damage polishing method for the ultra-precision machining of complex curved surfaces. However, the shortcomings of traditional shear thickening polishing fluid in polishing efficiency and fluid viscosity controllability limit its further application., a novel weak magnetic field-assisted shear thickening polishing fluid (WMFA-STPF) containing carbonyl iron particles (CIPs) is presented in this study, which utilizes its weak magnetorheological effect to strengthen the shear thickening phenomenon. The rheological characteristics of the WMFA-STPF samples were investigated. The results show that WMFA-STPF has good fluidity in the low shear rate range and better thickening characteristics in the working shear rate range. In order to verify the high efficiency, high quality and high uniformity polishing ability of the weak magnetic field-assisted shear thickening polishing technology for the spherical surface of zirconia ceramic workpiece, the contrast polishing experiment was designed and finished. The experimental results show that the weak magnetic field-assisted thickening effect can achieve high efficiency and high quality polishing of hard and brittle ceramics. After 75 min polishing, the surface damage was effectively improved and eliminated, the surface quality and uniformity were greatly improved, and the material removal rate reached 7.82 μm/h, increased by 156%.


2021 ◽  
pp. 251659842110355
Author(s):  
Talwinder Singh Bedi ◽  
Ajay Singh Rana

Modern technology requires producing of a sustainable product with a high surface accuracy. In applications where the surface quality is highly considerable in various internal cylindrical components requires technology to manufacture an ultrafine surface finish. There is, in general, a probability of inducing errors into products by the traditional finishing processes (such as grinding/honing), which lead to failure. Preferably with some evidence in the main text. Further, the advanced finishing processes are developed, where the finishing forces can be controlled by varying the power output. Instead of a solid abrasive tool, the smart polishing fluid is used, which gets activated under the magnetic fields. In this manuscript, the material removal under different internal surface finishing processes is elaborated, which helps in improving the surface quality of various industrial components. Also, the surface quality produced on various industrial components after traditional as well as advanced finishing processes are discussed.


Author(s):  
Duc Nam Nguyen ◽  
Hùng Anh Lý ◽  
Cong Truyen Duong

The non-Newtonian fluid is one type of shear thickening fluid which applied to process the complicated products. In this study, the new method of shear thickening fluid polishing (STFP) was used to polish the alloy steel SCM435 gears and the principle and performance of polishing process were also introduced. In the polishing process, the inclination angle of gears was believed to be an important parameter that affects the pressure and surface quality at different position on the tooth surfaces because it determines the contact between the polishing fluid and the tooth surface of the gear. The influence of the inclination angles on the pressure distribution and characteristics of fluid flow was performed by simulation process. The inclination angles of 0, 4, 8, 12, 16, 20 and 24 degrees were chosen in this study. As a result, the best inclination angle of gears is about 16 degree in the machining process. The tooth surfaces of gear have been in contact with the polishing fluid and the produced pressure reaches of 14.88 kPa. In addition, the influence of polishing speed on pressure were carried out in this study when inclination angle was established about 16 degree. The produced pressure on tooth surfaces increased with increasing the polishing speed. The results indicated that the different polishing speed also greatly affects the surface quality and machining efficiency. Therefore, the suggested machining method can become a suitable processing method for polishing the complicated products.


Procedia CIRP ◽  
2020 ◽  
Vol 89 ◽  
pp. 282-287
Author(s):  
Zhenzhong Zhang ◽  
Xianpeng Zhang ◽  
Xiao Liu ◽  
Peifa Zhou ◽  
Peng Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document