Research on Characteristics of Special Nonlinear Vibration System

2015 ◽  
Vol 724 ◽  
pp. 213-217
Author(s):  
Shu Yong Liu ◽  
Qing Chao Yang ◽  
Shi Jian Zhu ◽  
Xiu Lei Wei

<p>The characteristics of quasi-zero stiffness(QZS) system with nonlinear positive and negative stiffness is researched. A modified QZS model with nonlinear spring element is established and the stiffness curves are obtained based on the analysis of relationship between spring force and displacement. A non-dimensional form of QZS is deduced to discover its essential laws, and simulation is presented with different nonlinear springs. Then the force transmissibility of QZS is verified with the experiment, which shows that the QZS isolation performance is better than the linear one in the low frequency band, and there exists no resonant peak in this system.</p>

2012 ◽  
Vol 482-484 ◽  
pp. 1313-1316
Author(s):  
Rui Li ◽  
Li Min He ◽  
Xue Qin Li ◽  
Ke Long Chen

A semi-active vibration system via magnetorheological (MR) isolators can contribute to enhance isolation performance. In this study, a vertical vibration model of subway rail via MR isolators was proposed. The adjustable damping and stiffness characteristics of isolator were also analyzed. Based on a floating slab track (FST) isolation model, a variable domain fuzzy control system was proposed to decrease the vertical vibration force. The results simulated in MATLAB indicate that compared with passive isolators, FST system via MR isolators decease vertical vibration force transmissibility ratio to 40% at low frequency (15Hz) and to 31% at medium frequency (30Hz).


2020 ◽  
pp. 095745652097238
Author(s):  
Chun Cheng ◽  
Ran Ma ◽  
Yan Hu

Generalized geometric nonlinear damping based on the viscous damper with a non-negative velocity exponent is proposed to improve the isolation performance of a quasi-zero stiffness (QZS) vibration isolator in this paper. Firstly, the generalized geometric nonlinear damping characteristic is derived. Then, the amplitude-frequency responses of the QZS vibration isolator under force and base excitations are obtained, respectively, using the averaging method. Parametric analysis of the force and displacement transmissibility is conducted subsequently. At last, two phenomena are explained from the viewpoint of the equivalent damping ratio. The results show that decreasing the velocity exponent of the horizontal damper is beneficial to reduce the force transmissibility in the resonant region. For the case of base excitation, it is beneficial to select a smaller velocity exponent only when the nonlinear damping ratio is relatively large.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Zhuang Dong ◽  
Jian Yang ◽  
Chendi Zhu ◽  
Dimitrios Chronopoulos ◽  
Tianyun Li

This study investigates the vibration power flow behavior and performance of inerter-based vibration isolators mounted on finite and infinite flexible beam structures. Two configurations of vibration isolators with spring, damper, and inerter as well as different rigidities of finite and infinite foundation structures are considered. Both the time-averaged power flow transmission and the force transmissibility are studied and used as indices to evaluate the isolation performance. Comparisons are made between the two proposed configurations of inerter-based isolators and the conventional spring-damper isolators to show potential performance benefits of including inerter for effective vibration isolation. It is shown that by configuring the inerter, spring, and damper in parallel in the isolator, anti-peaks are introduced in the time-averaged transmitted power and force transmissibility at specific frequencies such that the vibration transmission to the foundation can be greatly suppressed. When the inerter is connected in series with a spring-damper unit and then in-parallel with a spring, considerable improvement in vibration isolation can be achieved near the original peak frequency while maintaining good high-frequency isolation performance. The study provides better understanding of the effects of adding inerters to vibration isolators mounted on a flexible foundation, and benefits enhanced designs of inerter-based vibration suppression systems.


2017 ◽  
Vol 21 (3) ◽  
pp. 1119-1132 ◽  
Author(s):  
Gui-Lan Yu ◽  
Hong-Wei Miao

The vibration isolation performance of a PC sandwich plate with periodic hollow tube core is investigated experimentally and numerically. The experiment results reveal that there exist vibration attenuation zones in acceleration frequency responses which can be improved by increasing the number of periods or tuning some structure parameters. The presence of soft fillers shifts the attenuation zone to lower frequencies and enhances the capability of vibration isolation to some extent. Dispersion relations and acceleration frequency responses are calculated by finite element method using COMSOL MULTIPHYSICS. The attenuation zones obtained by experiments fit well with that by simulations, and both are consistent with the band gap in dispersion relations. The numerical and experimental studies in the present paper show that this PC sandwich plate exhibits a good performance on vibration isolation in low frequency ranges, which will provide some useful references for relevant research and potential applications in vibration propagation manipulations.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881719 ◽  
Author(s):  
You Wang ◽  
Xinghua Zhu ◽  
Rong Zheng ◽  
Zhe Tang ◽  
Bingbing Chen

In this study, the applications of the cubic power law damping in vessel isolation systems are investigated. The isolation performance is assessed using the force transmissibility of the vessel isolation system, which is simplified as a multiple-degree-of-freedom system with two parallel freedoms. The force transmissibilities of different working conditions faced in practice are discussed by applying the cubic power law damping on different positions of the vessel isolation system. Numerical results indicate that by adding the cubic power law damping to an appropriate position, the isolation system can not only suppress the force transmissibility over the resonant frequency region but also keep the force transmissibility unaffected at the nonresonant frequency region. Moreover, the design of the nonlinear vessel isolation system is discussed by finding the optimal nonlinear damping of the isolation system.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Julia P. Slopsema ◽  
John M. Boss ◽  
Lane A. Heyboer ◽  
Carson M. Tobias ◽  
Brooke P. Draggoo ◽  
...  

Background: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs. Method: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves. The location, modality, and intensity of each sensation were also analyzed. In an effort to evoke natural sensations, several patterned waveforms were evaluated. Results: Distal sensation was obtained in all but one of the 48 nerves tested in able-bodied subjects and in the two nerves from subjects with an amputation. Increasing the pulse amplitude of the stimulus caused an increase in the area and magnitude of the sensation in a majority of subjects. A low frequency waveform evoked a tapping or tapping-like sensation in 29 out of the 31 able-bodied subjects and a sensation that could be considered natural in two subjects with an amputation. This waveform performed better than other patterned waveforms that had proven effective during implanted extra-neural stimulation. Conclusion: Surface electrical stimulation has the potential to be a powerful, non-invasive tool for activation of the nervous system. These results suggest that a tapping sensation in the distal extremity can be evoked in most able-bodied individuals and that targeting the nerve trunk from the surface is a valid method to evoke sensation in the phantom limb of individuals with an amputation for short term applications.


Sign in / Sign up

Export Citation Format

Share Document