Research on Relay Protection of Distribution Network System with Distributed Generation

2015 ◽  
Vol 734 ◽  
pp. 670-674
Author(s):  
Hui Hai Liu ◽  
Xiao Li Zhang ◽  
Wei Li ◽  
Xiao Yang Wang ◽  
Yi Fan Zhang

Introduce the current development of distributed generation, the structure and protection configuration of existing distribution network, and the fault current insert of different kinds of distributed generation was introduced. Through the distribution network in different positions to join distributed generation, the influence of the join of distributed generation on the existing protection of distribution network was analyzed, which included the serious interference to the sensitivity and selectivity of the original protection, the refusal of line protection, the action error of non- fault line protection. The influence of distributed generation on automatic reclosing, and the effect between fuses was discussed, to some extent, and base on the discussion some appropriate countermeasures are proposed.

2014 ◽  
Vol 1070-1072 ◽  
pp. 923-928
Author(s):  
Peng Sun ◽  
Ming Wu Luo ◽  
Zhao Xia Sun ◽  
Tian Ci Liu ◽  
Chang Hong Deng ◽  
...  

In light of the rapid development of the electric power grid, the integrated application of distributed generation (DG) units can be considered as a key driver. Nevertheless, along with large number of DG units are connected into a distribution network, maybe different kinds of effects are accordingly induced. In particular, regarding the configured relay protection, its selectivity and sensitivity may be affected. In this paper, the penetration capacity analysis of DG considering overcurrent relay protection and flux-coupling type FCL is conducted. Under different fault conditions, the theoretical impacts of introducing DG on the fault current are investigated, and a flux-coupling type FCL is suggested to limit the fault current and potentially enhance the DG’s access capacity. Furthermore, the detailed simulation model of a typical distribution network integrated with the DG and FCL is created. From the simulation results, the employment of the FCL can effectively reduce the fault current’s negative influence on the DG, and improve the DG’s access capacity to a certain extent.


2012 ◽  
Vol 433-440 ◽  
pp. 5924-5929 ◽  
Author(s):  
Jie Dong ◽  
Ya Jun Rong ◽  
Chun Jiang Zhang

With the connection of distributed generation (DG), structure of traditional distribution network changes and original relay protection scheme should be adjusted. On the basis of introducing the concept and advantages of distributed generation, this paper discusses the influence of distributed generation with different position or different capacity on current protection. The paper analyzes magnitude and distribution of fault current under short-circuit condition and change curves of fault current are given, which provides some theoretical basis for new relay protection scheme.


2021 ◽  
Author(s):  
Haymanot Takele Mekonnen

Abstract BackgroundOne of the new technologies in generating power near the distribution system is called distributed generation which has supportive and destructive characteristics to the power system protection. One of the destructive characteristics of distributed generation is increasing the level of fault current to the protective equipment of the power system. In addition to increment of fault, it also alters the radial nature of the power distribution system and cause the power bidirectional rather than unidirectional. Integration of distributed generation to the distribution network causes increment of fault current effect, reliability drop, and affects security of protection system. The level of failure of protection be contingent on type, size, location and number of distributed generation. This fault current can cause a great damage to the electrical equipment with the miss operations of protective devices. The main aim of this paper is analysis of the fault current level to the protection of distribution network due to the integration of distributed generation which concerns on solar distributed generation, wind distributed generation and combination of solar and wind distributed generations at a time. This paper conducts the analysis for the increment of fault current by the integration of distributed generation and its impact on distribution network protection. ResultsThe analysis and the modeling are conducted on the 15KV distribution network of the radial feeder in Debre Markos town. This paper has covered the ling to ground, line to line and three phase fault analysis and their impact on the protection of distribution system for the wind and solar distributed generation types. After the integration of the distributed generation the fault current is increased by 0.529KA for three phase, 0.74KA for line to ground, 0.467KA for line to line and 0.523KA for line to line to ground. ConclusionsThis paper confirms designing distribution network without forecasting the future demand of electric power users give the protection equipment additional requirement. As the result, the fault current after the integration of distributed generation to the distribution network have great value in terms of power system protection.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1245 ◽  
Author(s):  
Xipeng Zhang ◽  
Nengling Tai ◽  
Pan Wu ◽  
Xiaodong Zheng ◽  
Wentao Huang

This paper proposes a method of fault line selection for a DC distribution network. Firstly, the 1-mode current is calculated using the measured currents of the positive and the negative line. Then, it is time reversed and further decomposed by wavelet technology. Secondly, the lossless mirror line network is established according to the parameters and the topology of the DC distribution network. Thirdly, it is presumed that several virtual current sources are employed at the locations where the corresponding observers are, and the values of these current sources are equal to the processed 1-mode currents. Fourthly, a fault is placed at every point of the lossless mirror line network the RMS value of every assumed fault current is calculated. During this process, the phase coefficient of every lossless mirror line is set to vary along with the length of the line obeying Gaussian distribution. Finally, the line with the peak value of the RMS values of the currents is selected as the fault line. The result of fault line selection is updated using the fewest observers that are set in advance according to the initial result. A DC distribution network is simulated in PSCAD/EMDTC to verify the correctness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document