Virtual Planning of Needle Trajectories Using a Haptic Interface for a Brachytherapy Parallel Robot: An Evaluation Study

2015 ◽  
Vol 762 ◽  
pp. 155-160 ◽  
Author(s):  
Florin Gîrbacia ◽  
Bogdan Gherman ◽  
Silviu Butnariu ◽  
Nicolae Plitea ◽  
Doru Talabă ◽  
...  

Brachytherapy (BT) is a modality to treat cancer by inserting needles into a patient to deliver radioactive sources direct to the diseased tissue. The efficiency of the treatment is determined by the positions of the needles. A robot can be used in order to increase the precision of the needles locations. This paper presents an approach for needle trajectory planning based on isomorphic mapping from a haptic device. A virtual reality environment has been modelled containing a 3D reconstructed abdominal model of the patient. Needle insertion using the BT robot is controlled using a Force Dimension Omega haptic device. The developed software application allows the users to practice robotic needle insertion and to determine the most appropriate locations for the BT needles.

2013 ◽  
Vol 25 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Yuichi Kurita ◽  
◽  
Atsutoshi Ikeda ◽  
Kazuyuki Nagata ◽  
Tsukasa Ogasawara ◽  
...  

A haptic device is one of the interfaces promising as a human-computer interaction tool that provides users with information in a virtual reality environment. The proposed haptic augmentation presents the force response of an object by combining the force generated from a haptic device against the force response generated from the base object, which has material properties similar to those of the target object. In this paper, the concept of a haptic augmentation technique is described and the prototype of a haptic augmentation system is developed. Frequency characteristics and experiments by human participants show that the proposed method has better performance than a traditional device-only method.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


2017 ◽  
Vol 5 (3) ◽  
pp. 15
Author(s):  
GANDOTRA SANDEEP ◽  
Pungotra Harish ◽  
Moudgil Prince Kumar ◽  
◽  
◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-288
Author(s):  
Jeffrey Hausdorff ◽  
Nofar Schneider ◽  
Marina Brozgol ◽  
Pablo Cornejo Thumm ◽  
Nir Giladi ◽  
...  

Abstract The simultaneous performance of a secondary task while walking (i.e., dual tasking) increases motor-cognitive interference and fall risk in older adults. Combining transcranial direct current stimulation (tDCS) with the concurrent performance of a task that putatively involves the same brain networks targeted by the tDCS may reduce the negative impact of dual-tasking on walking. We examined whether tDCS applied while walking reduces the dual-task costs to gait and whether this combination is better than tDCS alone or walking alone (with sham stimulation). In 25 healthy older adults (aged 75.7±10.5yrs), a double-blind, within-subject, cross-over pilot study evaluated the acute after-effects of 20 minutes of tDCS targeting the primary motor cortex and the dorsal lateral pre frontal cortex during three separate sessions:1) tDCS while walking on a treadmill in a virtual-reality environment (tDCS+walking), 2) tDCS while seated (tDCS+seated), and 3) walking in the virtual-reality environment with sham tDCS (sham+walking). The complex walking condition taxed motor and cognitive abilities. During each session, single- and dual-task walking and cognitive function were assessed before and immediately after stimulation. Compared to pre-tDCS performance, tDCS+walking reduced the dual-task cost to gait speed (p=0.004) and other gait features (e.g., variability p=0.02), and improved (p<0.001) executive function (Stroop interference score). tDCS+seated and sham+walking did not affect the dual-task cost to gait speed (p>0.17). These initial findings demonstrate that tDCS delivered during challenging walking ameliorates dual-task gait and executive function in older adults, suggesting that the concurrent performance of related tasks enhances the efficacy of the neural stimulation and mobility.


Sign in / Sign up

Export Citation Format

Share Document