Experimental Investigation on Buckling Analysis of Woven Glass Fiber/Epoxy Laminated Composite Materials

2015 ◽  
Vol 766-767 ◽  
pp. 150-155
Author(s):  
S. Sivasaravanan ◽  
V.K. Bupesh Raja ◽  
Sathishkumar

The structural components made from the composite materials possess outstanding advantages like reliable mechanical properties, durability, and good corrosion resistance, and low density. They also exhibit high impact resistance and good damage tolerance. These merits of composite structures draw the attention of scientists, engineers and researchers in generally the stability of composite structures is verified by carrying out buckling analysis. The aircraft components are made up of laminated composite plates are subjected to buckling analysis, in order to confirm whether the component withstand the critical in plane loads. Composite structural plates provided with circular cut out, square cut out and rectangular cut-out are widely used as structural members in aircraft and vehicle design. The different holes are provided in these members can be access holes, pass-through holes for any hardware or holes for windows and doors. Sometimes these holes are produced for weight reduction in the composite structural components. In this present study, buckling experiments were carried out on Epoxy/woven glass fiber laminated composite plate specimens and the influence of different cut-out shapes like circular, square and rectangle are examined and determined experimentally. Boundary conditions free and clamped were considered for all the experiments. After the buckling experiments, comparisons were made between these two test results. These results show the effect of various cut-out shapes on the buckling load.

2020 ◽  
pp. 073168442095810
Author(s):  
Sang Yoon Park ◽  
Won Jong Choi

This paper presents a review of recent literature related to the static mechanical testing of thermoset-based carbon fiber reinforced composites and introduces a material qualification methodology to generate statistically-based allowable design values for aerospace application. Although most test methods have been found to be effective in determining the specific material properties by incorporating them into the material qualification and quality control provisions, a full validation to clarify the behavior of thermoset-based laminated composite materials is currently lacking, particularly with regard to the characterization of compressive, in-plane, interlaminar shear, and damage tolerance properties. The present study obtains information on the different types of test method that can be employed within the same material properties, and makes an in-depth experimental comparison based on the past literatures. A discussion on the scope of theoretical analysis involves a description of how the proposed test method can be adequate for obtaining more accurate material properties. This discussion is directly applicable to the assessment of material nonlinearity and the geometrical effect of specimens. Finally, the resulting failure modes and the effect of each material property are studied to aid the understanding of the load distribution and behavior of laminated composite materials.


2014 ◽  
Vol 4 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Ferreira Mário Benedito ◽  
Correa Gustavo Freitas ◽  
Panzera Túlio Hallak ◽  
Fiorelli Juliano ◽  
Silva Vânia Regina Velloso ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Aleksander Muc

The main goal of building composite materials and structures is to provide appropriate a priori controlled physico-chemical properties. For this purpose, a strengthening is introduced that can bear loads higher than those borne by isotropic materials, improve creep resistance, etc. Composite materials can be designed in a different fashion to meet specific properties requirements.Nevertheless, it is necessary to be careful about the orientation, placement and sizes of different types of reinforcement. These issues should be solved by optimization, which, however, requires the construction of appropriate models. In the present paper we intend to discuss formulations of kinematic and constitutive relations and the possible application of homogenization methods. Then, 2D relations for multilayered composite plates and cylindrical shells are derived with the use of the Euler–Lagrange equations, through the application of the symbolic package Mathematica. The introduced form of the First-Ply-Failure criteria demonstrates the non-uniqueness in solutions and complications in searching for the global macroscopic optimal solutions. The information presented to readers is enriched by adding selected review papers, surveys and monographs in the area of composite structures.


2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


1974 ◽  
Vol 10 (4) ◽  
pp. 394-401 ◽  
Author(s):  
V. A. Kolgadin ◽  
G. P. Bogatyr' ◽  
V. I. �tokova

Sign in / Sign up

Export Citation Format

Share Document