scholarly journals Comparison of Distribution Methods of Low Flow Analysis for Bandar Segamat, Johor

2015 ◽  
Vol 773-774 ◽  
pp. 1266-1270
Author(s):  
Yuliarahmadila Erfen ◽  
Mohd Shalahuddin Adnan ◽  
Noorfathiah Che Ali ◽  
Nurul Farehah Amat ◽  
Zawani Mohd Zahudi

During the monsoon season, certain areas in Malaysia are experiencing a flood. While during the transition period Malaysia is experiencing a drought. This phenomenon could lead to severe disaster and precaution monitoring is needed to avoid this occurrences. Low flow during the dry season could lead to several negative effects on the river ecosystem. Thus, this study was conducted to determine the low flow frequency and intensity for the Segamat city. The duration for 2 years to 100 years based on the previous 20 years of stream flow data were used to calculated. Stream flow data were obtained from the Department of Irrigation and Drainage (DID). Two prominent distribution analyses methods known as Gumbel Distribution and Log pearson Type III Distribution were applied. The distribution results were validated using Root Mean Square Error (RMSE) and California method and Weibull method are selected. Based on the analyses results, it clearly shows that the distibution of low flow are between 1 m3/s to 10 m3/s. The flow are significantly correlate with the rainfall intensity. RMSE was selected based on the lowest value of 0.721 for the Gumble Distribution and 1.831 for Log Pearson Type III Distribution. Chi-square test shows a good agreement for Gumble Distribution (7.615<12.59) and Log Pearson Type III(5.201<11.07) using 5% significant level. The confident level form both tests are valid (p>0.05), thus, this results could be used for further analyses to alleviate the low flow in the study area.

1985 ◽  
Vol 16 (2) ◽  
pp. 105-128 ◽  
Author(s):  
G. V. Loganathan ◽  
C. Y. Kuo ◽  
T. C. McCormick

The transformations (i) SMEMAX (ii) Modified SMEMAX (iii) Power and Probability Distributions (iv) Weibull (α,β,γ) or Extreme value type III (v) Weibull (α,β,0) (vi) Log Pearson Type III (vii) Log Boughton are considered for the low flow analysis. Also, different parameter estimating procedures are considered. Both the Weibull and log Pearson can have positive lower bounds and thus their use in fitting low flow probabilities may not be physically justifiable. A new derivation generalizing the SMEMAX transformation is proposed. A new estimator for the log Boughton distribution is presented. It is found that the Boughton distribution with Cunnane's plotting position provides a good fit to low flows for Virginia streams.


2018 ◽  
Vol 3 (01) ◽  
pp. 100-104
Author(s):  
J. Kumar ◽  
R. Suresh ◽  
Jyoti .

In present study an attempt has been made to evaluate the suitable probability distribution models for predicting 1, 2, 3, 4, 5, 6 and 7-days annual maximum rainfall amounts based on 39 years (1964 to 2002) daily rainfall data. Three probability distribution models namely: Log Normal distribution, Log Pearson Type-III distribution and Gumbel distribution models were considered to evaluate their goodness of fit. The Weibull’s method was used for computation of observed rainfall values at1, 5, 20, 30, 50, 95 and 99 percent probability levels. The Log Pearson type –III distribution was found suitable for 1 and 2 days maximum annual rainfall, while Gumbel distribution was found to be the best for predicting 3, 4, 5, 6 and 7- days annual maximum rainfall amounts. The relationships between annual maximum rainfall and return periods were also developed. The non – linear relationships (i.e. logarithmic) were found to be most suitable for all the cases.


2019 ◽  
Vol 19 (1) ◽  
pp. 21-28
Author(s):  
A. Asante-Annor ◽  
D. Oti

Rainstorm intensity–duration–frequency relationship is a tool required for appropriate planning and designing of drainage systems. In this study, 22 years of annual peak daily rainstorm data distribution was tested to verify if it followed Lognormal, Gumbel, or Log Pearson Type III distribution. The distribution to which it belonged was used to build rainstorm intensity model of 0.5, 2, 5, 8, 10, 12, 15, 18, and 24 h durations. The findings revealed that the observed peak annual rainstorm followed Gumbel and Log Pearson Type III distributions at 0.05 significant level. Sherman rainstorm intensity model was also adopted and the parameters determined. Data generated with the Gumbel distribution function best fitted the Sherman model followed by those by log Pearson Type III. The rainstorm models developed with Sherman’s equation were recommended for use in the Tarkwa area. Keywords: Flood, Gumbel Distribution, Water Resources, Rainstorm


Author(s):  
Kuldeepak Pal ◽  
Kanhu Charan Panda ◽  
Gaurav Sharma ◽  
Suryansh Mandloi

The study is aimed at finding the best distribution to match the steam flow and calculation of magnitude and frequency of flow. In the current study, we have used several statistical distributions to find the best fit distribution for stream flow and used flood frequency analysis techniques to find the magnitude and frequency of stream flow and non-exceedance probability of peak discharge. The study has been performed at Sikandarpur and Rosera gauging sites of BurhiGandak River. Historical (50 years) maximum annual peak discharge data of each station are used for statistical analysis for estimating maximum peak discharge in 5, 10, 25, 50, 100 year return period. In this study, Lognormal distribution, Galton distribution, Gamma distribution, Log Pearson Type III distribution, Gumbell distribution, Generalised extreme values distribution have been considered to describe the annual maximum stream flow. Flood frequency analysis methods were used for estimating the magnitude of the extreme flow events and their associated return periods. For both Sikandarpur and Rosera stations, Log Pearson type III distributions showed the lowest value of K–S and Chi-square test statistic. The annual probable peak discharge for 5, 10, 25, 50, and 100 years return period is calculated for each distribution. The most suitable distribution for both the stations is found to be the log-Pearson type III distribution.


Author(s):  
Jakub Mészáros ◽  
◽  
Pavol Miklánek ◽  
Pavla Pekárová ◽  
◽  
...  

In this paper the results are presented of estimation of T-year specific discharge of several streams in two regions in Slovakia. The Qmax time series used in the study were observed at water gauges from lowland Slovak part of the Morava River basin, and from the mountainous Belá River basin. For estimating the design values, we have studied the use of only one type of probability distribution, namely the Log-Pearson Type III Distribution (LP3 distribution). The use of only one type of distribution brings several benefits, e.g. possibility of the regionalization of the distribution parameters (in this study skew coefficient). In the first step the design values of the specific discharge series qmax (with historical data) were estimated and regional skew coefficients Gr of the LP3 distribution were computed. Regional skewness coefficient Gr was estimated to be 0.38 in the Morava River region, and 0.73 in the Belá River region. In many cases the estimate of the 1000-year specific discharge is two times higher than the value of the 100-year specific discharge. Then we have derived the empirical relations between station skew coefficient G and the elevation of the water gauge. In the second step we have derived the empirical relationships between 1000-years specific discharge q1000 and the elevation of the water gauge for both regions separately. The derived empirical regional equations can be used to estimate the 1000-years specific discharge of other streams in the region.


1956 ◽  
Vol 10 (2) ◽  
pp. 13
Author(s):  
John Caffrey ◽  
N. C. Perry ◽  
D. Teichroew

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jakub Mészáros ◽  
Pavla Pekárová ◽  
Katarína Melová ◽  
Ján Pekár

MAUSAM ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 291-300
Author(s):  
N. VIVEKANANDAN

Lkkj & ty vkiwfrZ dh ;kstuk vkSj fMtkbu cukus] i;kZoj.kh; vkSj vkfFkZd nq"izHkkoksa dk fo’ys"k.k djus] ty/kkjk ds ikuh dh xq.krk dk ekWMqyu djus] ty/kkjk ds mi;ksxksa dks fu;fer djus rFkk izkÑfrd vkSj fu;fer ty/kkjk ra=ksa dh tkudkjh ds lkekU; Lrj esa lq/kkj ykus ds fy, ty/kkjk ds fuEu izokg y{k.kksa dk mi;ksx fd;k x;k gSA rhu fHkUu unh csfluksa uker% egkunh] xksnkojh vkSj ueZnk ds fofHkUu izR;kxeu dky ds fuEu izokg y{k.kksa dk irk yxkus ds fy, lkaf[;dh; ekWMqyu i)fr dk mi;ksx fd;k x;k gS ftlesa ckWDl&dkWDl :ikarj.k ds ekud laHkkO;rk forj.k] ykWx ukWeZy] ykWx ihvjlu Vkbi III vkSj ihvjlu Vkbi III rFkk ohcqy 'kkfey gSaA fofHkUu ty/kkjkvksa ds fuEu izokg y{k.kksa dh rqyuk djus ds fy, dkbZ oxZ ¼c2½ tk¡p dk mi;ksx  fd;k x;k gSA bl 'kks/k i= ds vuqlkj ykWx ukWeZy] ohcqy vkSj ihvjlu Vkbi III forj.k Øe’k% ueZnk]  egkunh vkSj xksnkojh unh ds fuEu izokg y{k.kksa ds fy, mfpr ik, x, gSaA blesa fuEu nkc vko`fr oØksa dk Hkh fodkl fd;k x;k gS vkSj mUgsa izLrqr fd;k x;k gSA Low-flow characteristics of streams are used in planning and design of water supplies, analysing environmental and economic impacts, modelling stream water quality, regulating instream uses, and improving the general level of understanding of natural and regulated stream systems.  Statistical modelling approach involving standard probability distributions of Box-Cox Transformation, Lognormal, Log Pearson Type III and Pearson Type III and Weibull are used to determine low-flow characteristics for different return periods for three different river basins, namely, Mahanadi, Godavari and Narmada.  Chi-square (c2) test is used for comparison of low-flow characteristics of different stream.  The paper presents that Lognormal, Weibull and Pearson Type III distributions are found to be suitable for determination of low-flow characteristics for rivers Narmada, Mahanadi and Godavari respectively.  Low-flow frequency curves are also developed and presented.


Sign in / Sign up

Export Citation Format

Share Document