Asymmetric Cascaded DC Sources Multilevel Inverter with Less Active Switches and Simpler Control Strategy

2015 ◽  
Vol 785 ◽  
pp. 111-115
Author(s):  
Yee Chyan Tan ◽  
Syed Idris Syed Hassan ◽  
Siok Lan Ong ◽  
Jenn Hwai Leong

Cascaded H-Bridge (CHB) multilevel inverter (MLI) is among the most preferred topology in solar PV systems. While traditional asymmetric CHB MLI is easy to achieve higher number of output voltage levels compared to traditional symmetric CHB MLI, charge balancing between the voltage sources remains a challenge for asymmetric CHB MLI. This drawback results in unsteady DC voltage levels due to unbalanced power drawn from each voltage sources. Besides that, in battery powered applications, unbalanced power drawn results in unequal discharged among the batteries. In this paper, an asymmetric half H-bridge (HHB) MLI topology is presented which is easy to modularize as for symmetric CHB MLI while maintaining the ease in charge balancing control. The performance of this proposed asymmetric HHB MLI with charge balance control has been evaluated using PSIM software.

2015 ◽  
Vol 785 ◽  
pp. 96-100 ◽  
Author(s):  
Yee Chyan Tan ◽  
Syed Idris Syed Hassan ◽  
Siok Lan Ong ◽  
Jenn Hwai Leong

Cascaded H-Bridge (CHB) multilevel inverter (MLI) is among the most preferred topology in solar PV systems. While traditional asymmetric CHB MLI is easy to achieve higher number of output voltage levels compared to traditional symmetric CHB MLI, charge balancing between the voltage sources remains a challenge for asymmetric CHB MLI. This drawback results in unsteady DC voltage levels due to unbalanced power drawn from each voltage sources. Besides that, in battery powered applications, unbalanced power drawn results in unequal discharged in the batteries. In this paper, an asymmetric CHB MLI topology is proposed which is easier to modularize as for symmetric CHB MLI while maintaining the ease in charge balancing control. The performance of this proposed asymmetric CHB MLI with charge balance control has been evaluated using PSIM software.


2015 ◽  
Vol 785 ◽  
pp. 182-187
Author(s):  
Yee Chyan Tan ◽  
M. Aizuddin Yusof ◽  
Syed Idris Syed Hassan ◽  
Siok Lan Ong ◽  
Jenn Hwai Leong

Cascaded H-bridge multilevel inverter is among the most preferred topology in solar systems. While traditional asymmetric cascaded H-bridge multilevel inverter is easy to achieve higher number of output voltage levels compared to traditional symmetric cascaded H-bridge multilevel inverter, charge balancing between the voltage sources remains a challenge for asymmetric cascaded H-bridge multilevel inverter. This drawback results in unsteady DC voltage levels due to unbalanced power drawn from each voltage sources. Besides that, in battery powered applications, unbalanced power drawn results in unequal discharged in the batteries. In this paper, two three-phase asymmetric cascaded H-bridge multilevel inverter topologies are proposed which offer easier in terms of modularity while maintaining the ease in charge balancing control. The performance of these two proposed topologies with charge balance control has been evaluated using PSIM software.


Author(s):  
V. Hemant Kumar ◽  
Pakki Pavan Kumar ◽  
R.N. Patel

2008 ◽  
Vol 128 (3) ◽  
pp. 244-250
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

2010 ◽  
Vol 170 (3) ◽  
pp. 40-47
Author(s):  
Kenji Amei ◽  
Kenji Teshima ◽  
Youhei Tanizaki ◽  
Takahisa Ohji ◽  
Masaaki Sakui

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Aparna Prayag ◽  
Sanjay Bodkhe

In this paper a basic block of novel topology of multilevel inverter is proposed. The proposed approach significantly requires reduced number of dc voltage sources and power switches to attain maximum number of output voltage levels. By connecting basic blocks in series a cascaded multilevel topology is developed. Each block itself is also a multilevel inverter. Analysis of proposed topology is carried out in symmetric as well as asymmetric operating modes. The topology is investigated through computer simulation using MATLAB/Simulink and validated experimentally on prototype in the laboratory.


2020 ◽  
Vol 8 (5) ◽  
pp. 5180-5185

Paper Setup must be in A4 size with Margin: Top In the present paper multi carrier sinusoidal modulation technique which is an efficient method of producing control signals is used for a symmetrical inverter with several levels in cascade H Bridge is discussed. The Cascaded H-Bridge performance output levels depend on the DC voltage sources used at the input side. With the help of two DC voltage sources, five level output can be obtained whereas three sources gives levels of seven in output voltage. In this paper, multi-carrier SPWM switching is obtained for switching of multilevel inverter based switches. Two signals are used in this switching method, among which one of the signals is reference which is a low frequency sinusoidal signal and the one is a carrier signal. In case of sinusoidal PWM method of modulation technique, the reference signal is a sinusoidal one and triangular signal can be used as a carrier signal. These types of inverters have the ability to generate inverted output voltage with an efficient harmonic spectrum and reliable output results. This document provides switching signal for H-bridge inverter structure which can improve harmonic performance. The 5-level multilevel inverter is simulated for traditional carrier-based pulse-width modulation (PWM) phase change carrier techniques. The total harmonic performance of the output voltages is analyzed for the two PWM control methods. The performance of the symmetrical PWM CHB is simulated using MATLAB-SIMULINK model. Model results show that THD can be minimized to a limit with level shifted modulation method of the sinusoidal pulse width. The results from the simulations show that the quality of the waveform of the output voltage improves with less loss and with a lower THD.


2019 ◽  
Vol 8 (3) ◽  
pp. 6584-6591

In recent days, multilevel inverter has widely been used for high power application. This may be due to the reduction of total harmonic distortion (THD) of the output voltage level and having low blocking voltages of switches. In the existing system, DC voltage source which is maintained constant is given as the input to the inverters which contains the series connection of fundamental block and is analyzed in symmetric and asymmetric mode of operation to produce various voltage levels. The proposed approach replaces the DC voltage source to the Photovoltaic (PV) cell has been used which has variations in the output voltage side depends on the solar irradiation level. This Photovoltaic cell uses Maximum Power Point Tracking (MPPT) algorithm to produce required voltage. As the input to the multilevel inverter (MLI) has to be maintained constant a fly back forward converter has been used in between the Photovoltaic cell and the multilevel inverter, so that the required multiple constant output voltage has been obtained on the output of the converter. Using the output of the converter 13 output voltage levels can be obtained from the multilevel inverter. The performance of the proposed system is verified by simulation through MATLAB/Simulink environment


Sign in / Sign up

Export Citation Format

Share Document