scholarly journals A 13-Level Asymmetrical Cascaded Inverter for Photovoltaic System With DC-DC Flyback Converter

2019 ◽  
Vol 8 (3) ◽  
pp. 6584-6591

In recent days, multilevel inverter has widely been used for high power application. This may be due to the reduction of total harmonic distortion (THD) of the output voltage level and having low blocking voltages of switches. In the existing system, DC voltage source which is maintained constant is given as the input to the inverters which contains the series connection of fundamental block and is analyzed in symmetric and asymmetric mode of operation to produce various voltage levels. The proposed approach replaces the DC voltage source to the Photovoltaic (PV) cell has been used which has variations in the output voltage side depends on the solar irradiation level. This Photovoltaic cell uses Maximum Power Point Tracking (MPPT) algorithm to produce required voltage. As the input to the multilevel inverter (MLI) has to be maintained constant a fly back forward converter has been used in between the Photovoltaic cell and the multilevel inverter, so that the required multiple constant output voltage has been obtained on the output of the converter. Using the output of the converter 13 output voltage levels can be obtained from the multilevel inverter. The performance of the proposed system is verified by simulation through MATLAB/Simulink environment

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 524 ◽  
Author(s):  
Aryorad Khodaparast ◽  
Erfan Azimi ◽  
Ali Azimi ◽  
M. Ebrahim Adabi ◽  
Jafar Adabi ◽  
...  

A new structure of switched capacitor multilevel inverter (SCMLI) capable of voltage boosting and with self-balancing ability is introduced in this article. This advantage is the result of a step by step rise of capacitor voltages in each module, supplied by just one DC voltage source. The proposed topology generates a sinusoidal output waveform with a magnitude several times greater than the input one. Higher output staircase AC voltage is obtained by applying a nearest level control (NLC) modulation technique. The most significant features of this configuration can be mentioned as: fewer semiconductor devices, remarkably low total harmonic distortion (THD), desirable operating under high /low frequency, high efficiency, inherent bipolar voltage production, easy circuit expansion, ease of control and size reduction of the circuit thanks to utilizing neither bulky transformer nor inductor. Moreover, the proposed SCMLI is comprehensively surveyed through theoretical investigation and a comparison of its effectiveness to recent topologies. Eventually, the operating principle of a 25-level prototype of the suggested SCMLI is validated by simulation in the MATLAB SIMULINK environment and experimental results.


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


2019 ◽  
Vol 5 (6) ◽  
pp. 9
Author(s):  
Deepa Raghuwanshi ◽  
Santosh Kumar

Multilevel inverters with a large number of steps can generate high quality voltage waveforms, good enough to be considered as suitable voltage source generators. An advanced multilevel inverter topology is proposed to optimize number of bidirectional switches. In this work the an five-level cascade H-bridge Inverter, which uses multicarrier based control structure and two capacitor with 10 switching MOSFETs topology is being presented. Analysis is done for RL and pure resistive load. The PWM strategy reduces the THD and this strategy enhances the fundamental output voltage. The experimental and simulated results show that total harmonic distortion of output voltage and current waveform shapes are 5.16 % and 5.77% respectively for RL load which are within the acceptable limits.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750203 ◽  
Author(s):  
Ebrahim Babaei ◽  
Mohammad Shadnam Zarbil ◽  
Mehran Sabahi

In this paper, a new topology for cascaded multilevel inverters based on quasi Z-source converter is proposed. In the proposed topology, the magnitude of output voltage is not limited to dc voltage source, while the magnitude of output voltage of conventional cascaded multilevel inverters is limited to dc voltage source. In the proposed topology, the magnitude of output voltage can be increased by controlling the duty cycle of shoot-through (ST) state, transformer turn ratio, and the number of switched inductors in the Z-source network. As a result, there is no need for extra dc–dc converter. In the proposed topology, the total harmonic distortion (THD) is decreased in comparison with the conventional Z-source inverters. The proposed topology directly delivers power from a power source to load. In addition, in the proposed basic unit, higher voltage gain is achieved in higher modulation index which is an advantage for the proposed base unit. The performance of the proposed topology is verified by the experimental results of five-level single-phase inverter.


10.29007/m2mq ◽  
2018 ◽  
Author(s):  
Shubham R. Patel ◽  
Gaurang K. Sharma ◽  
Ashish R. Patel

Multilevel inverter allows the production of high voltage with lower harmonic distortion in ac output and it eliminates the need of transformer. With the usage of multilevel inverter, we can get the required ac voltage output from multiple dc voltage rails. One of the disadvantage in it is the unbalancing of dc link capacitor voltage. The basic aim of this paper is the balancing of dc link capacitor voltage in diode-clamped multilevel inverter. There are different approaches which could be used for balancing of the capacitor voltage. In this paper, the method of additional auxiliary circuit in the form of Two-level Boost converter is being adopted to balance the inner capacitor voltages so as to get the required multilevel output. This balancing leads to the reliability in the inverter output voltage and extension in life of capacitor. The simulations for this are being performed in MATLAB SIMULINK® and the result are being analyzed for the same by employing it for different load condition. The scheme thus offer the proper balancing of capacitor voltage.


2017 ◽  
Vol 27 (04) ◽  
pp. 1850055 ◽  
Author(s):  
Kishor Thakre ◽  
Kanungo Barada Mohanty ◽  
Vinaya Sagar Kommukuri ◽  
Aditi Chatterjee

Nowadays, multilevel inverters (MLI) are receiving remarkable attention due to salient features like less voltage stress on switches and low total harmonic distortion (THD) in output voltage. However, the required switch count increases with number of voltage levels. This paper presents a new topology for asymmetric multilevel inverter as a fundamental block. Each block generates 13-level output voltage using eight switches and four unequal dc voltage sources. The proposed configuration offers special features such as reduced number of switches, isolated dc sources, cost economy, less complex and modular structure than other similar contemporary topologies. Moreover, significant reduction in voltage stress on the circuit switches can be achieved. Comparative studies of proposed topology with the conventional and recent topologies have been presented in terms of power switches, gate driver circuit requirement, isolated dc voltage sources and total standing voltage. Multicarrier-based sinusoidal pulse width modulation (SPWM) scheme is adopted for generating switching signals using dSPACE real-time controller. In addition, proposed topology offers a fewer number of ON-state switches that lead to reduction in power loss. The proposed topology is validated through simulation and experimental implementation.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 55
Author(s):  
Anuja Prashant Diwan ◽  
N Booma Nagarajan ◽  
T Murugan ◽  
S Ashrafudeen ◽  
G J. Jenito Paul

In this paper, single phase nine level cascaded multilevel inverter using trinary voltage source is described. Normally for getting nine level MLI output, four H-Bridges are required. But in proposed method, nine level output is achieved by using two H-Bridges only. Performance of Multilevel inverter is improved by using modular switching pattern. This method reduces the number of switches to the half and thus reduces switching losses. Since the number of levels at the output voltage is increased, Total Harmonic Distortion (THD) gets reduced significantly. This presents simple configuration is simple and can be controlled easily. MATLAB-SIMULINK is used to validate the results of proposed technic, simulation is carried out using. The proposed method has been exhaustively compared with classical cascaded H-Bridge topology. 


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1133
Author(s):  
Sheikh Tanzim Meraj ◽  
Nor Zaihar Yahaya ◽  
Kamrul Hasan ◽  
Molla Shahadat Hossain Lipu ◽  
Ammar Masaoud ◽  
...  

This research proposes a three-phase six-level multilevel inverter depending on twelve-switch three-phase Bridge and multilevel DC-link. The proposed architecture increases the number of voltage levels with less power components than conventional inverters such as the flying capacitor, cascaded H-bridge, diode-clamped and other recently established multilevel inverter topologies. The multilevel DC-link circuit is constructed by connecting three distinct DC voltage supplies, such as single DC supply, half-bridge and full-bridge cells. The purpose of both full-bridge and half-bridge cells is to provide a variable DC voltage with a common voltage step to the three-phase bridge’s mid-point. A vector modulation technique is also employed to achieve the desired output voltage waveforms. The proposed inverter can operate as a six-level or two-level inverter, depending on the magnitude of the modulation indexes. To guarantee the feasibility of the proposed configuration, the proposed inverter’s prototype is developed, and the experimental results are provided. The proposed inverter showed good performance with high efficiency of 97.59% following the IEEE 1547 standard. The current harmonics of the proposed inverter was also minimized to only 5.8%.


Sign in / Sign up

Export Citation Format

Share Document