An Integrated Conversion System and Charge Balance Control Strategy for PHEV Based on MMMC

Author(s):  
Zhenxing CHENG ◽  
Guangzhu WANG
2015 ◽  
Vol 785 ◽  
pp. 111-115
Author(s):  
Yee Chyan Tan ◽  
Syed Idris Syed Hassan ◽  
Siok Lan Ong ◽  
Jenn Hwai Leong

Cascaded H-Bridge (CHB) multilevel inverter (MLI) is among the most preferred topology in solar PV systems. While traditional asymmetric CHB MLI is easy to achieve higher number of output voltage levels compared to traditional symmetric CHB MLI, charge balancing between the voltage sources remains a challenge for asymmetric CHB MLI. This drawback results in unsteady DC voltage levels due to unbalanced power drawn from each voltage sources. Besides that, in battery powered applications, unbalanced power drawn results in unequal discharged among the batteries. In this paper, an asymmetric half H-bridge (HHB) MLI topology is presented which is easy to modularize as for symmetric CHB MLI while maintaining the ease in charge balancing control. The performance of this proposed asymmetric HHB MLI with charge balance control has been evaluated using PSIM software.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3177 ◽  
Author(s):  
Run Min ◽  
Dian Lyu ◽  
Shuai Cheng ◽  
Yingshui Sun ◽  
Linkai Li

In this paper, a linearized discrete charge balance (LDCB) control strategy is proposed for buck converter operating in discontinuous conduction mode (DCM). For DC-DC power converters, discrete charge balance (DCB) control is an attractive approach to improve the output voltage transient response. However, as a non-linear control strategy, the algorithm is complex, which is difficult for implementation. To reduce the complexity, this paper proposes the LDCB control strategy that is derived through linearizing conventional DCB controller. By deriving the differential functions of the DCB control algorithm, the small signal relationship between the input and output of DCB controller is explored. Furthermore, based on the relationship, the LDCB controller is formed through three parallel feed loops to the duty ratio. As a linear control approach, the achieved LDCB controller is greatly simplified for implementation. This not only saves the hardware cost, but also reduces the calculation lag, which provides potential to improve the switching frequency. Besides, since the LDCB controller shares the same small signal model as that of DCB controller, it achieves similar control loop bandwidth and transient performance. Effectiveness of the proposed LDCB control is verified by zero/pole plots, transient analyses and experimental results.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Lingguo Kong ◽  
Guowei Cai ◽  
Sidney Xue ◽  
Shaohua Li

An AC-linked large scale wind/photovoltaic (PV)/energy storage (ES) hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS) and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC), is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM) is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT) capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC) 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 408-418
Author(s):  
Yonghong Deng ◽  
Quanzhu Zhang

AbstractIn order to solve the problem that the long cable variable voltage and variable frequency (VVVF) system does not adopt an effective capacitor voltage sharing control method, resulting in a poor effect of resonance overvoltage control, the resonance overvoltage control algorithm of the long cable VVVF system based on discrete mathematics is studied. First, the long cable frequency conversion drive system is established. In order to ensure voltage loss in the range of motor requirements, a frequency converter–cable–motor (ICM) system connection mode is used to maintain the system operation. Based on the research of the capacitor voltage balance control strategy of a long cable frequency conversion drive system, the discrete mathematical model of the AC side of the ICM system is established by using this control strategy. The improved constant active power controller is obtained by establishing the mathematical model, and the resonant overvoltage in a long cable frequency conversion drive is realized by using the constant active power controller. The experimental results show that the algorithm can effectively control the resonance overvoltage phenomenon in the long cable frequency control system, and the control accuracy is over 97%. It has good performance and can be applied in practice.


Sign in / Sign up

Export Citation Format

Share Document