Performance Development of Space Vector Pulse Width Modulation for Induction Motor Drive Using Artificial Intelligence

2015 ◽  
Vol 785 ◽  
pp. 146-150 ◽  
Author(s):  
Jamal Abd Ali ◽  
M.A. Hannan ◽  
Azah Mohamed ◽  
Hussein Shareef ◽  
Ammar Hussein Mutlag

Space vector pulse width modulation (SVPWM) technique is an advanced computation-intensive PWM method. It is the best among all PWM techniques for three-phase induction motor (TIM) drive applications because of its superior performance characteristics. In this paper, the use of artificial neural network (ANN) based SVPWM technique avoids the computational complex used in conventional SVM implementation. An ANN scheme structure is suggested to identify and approximate the conventional SVPWM for decrease the computational problem. Moreover, proportional-integral (PI) controller tuning is achieved using a particle swarm optimization (PSO) algorithm to improve the TIM speed controller’s response performance. By designing an appropriate PSO algorithm, kp and ki of the PI speed controller parameters are tuned for TIM to attain the best parameter values.

This paper deals with sensorless vector controlled induction motor in which torque pulsations are reduced with improved input of induction motor. In proposed technique two multi winding transformers are used for generation of 18 sinusoidal signals given to rectifier unit and the rectifier output given as input to 9 level multi level inverter. In this proposed technique gating signals to the inverter switches will be provided through space vector pulse width modulation which considers speed as reference. This configuration was simulated in MATLAB/Simulink.and the simulation results are presented here with improvement in reduction of THD.


2011 ◽  
Vol 383-390 ◽  
pp. 7321-7327
Author(s):  
Luo Fei Wan ◽  
Xian Xing Liu ◽  
Zheng Qi Wang ◽  
Jin Wei Zhou

This paper presents a new strategy of direct torque controller for bearingless induction motor using space vector pulse width modulation based on fuzzy adaptive control. when we use direct torque controller using space vector pulse width modulation to take decoupling, the parameters of PI controller which generating the reference voltage vector in conventional SVM-DTC are difficult to determine the dynamic operation. In order to improve away the disadvantages of conventional SVM-DTC system, flux and torque fuzzy adaptive controller were designed to substitute the original flux and torque PI controller in the controlling for bearingless induction motor using space vector pulse width modulation. With the fuzzy algorithm, it is easy to obtain the control voltage component of the flux and torque respectively. Two voltage vectors achieve real-time adjustment and solve the disturbance problems in torque loop and flux loop. In this paper, the design process of the fuzzy adaptive controller is given. Use Matlab/Simulink to check the improved and traditional SVM-DTC method. The results show that the improved algorithms have a better performance in reducing the ripple of torque, flux and Rotor displacement when compared with the tradition DTC method. And it also improves the system dynamic performance.


2015 ◽  
Vol 8 (7) ◽  
pp. 1083-1094 ◽  
Author(s):  
Pradabane Srinivasan ◽  
Beeramangalla Lakshminarasaiah Narasimharaju ◽  
Nandiraju Venkata Srikanth

2018 ◽  
Vol 3 (1) ◽  
pp. 99-107
Author(s):  
Maciej Chojowski

Abstract The purpose of the article was to present the idea of space vector pulse width modulation (SVPWM) and implementation in Nios II softcore processor. The SVPWM module was described in a classical method in hardware description language both as an independent structure and as an additional component to softcore processor. The available methods were compared, and the experiment was carried out in the laboratory to test implemented SVPWM algorithm using high-speed induction motor.


Sign in / Sign up

Export Citation Format

Share Document