Experimental Evaluation of Compression Ignition Engine Fueled with Cashew Nut Shell Liquid Diesel Blend with the Effect of Various Injection Pressures

2015 ◽  
Vol 787 ◽  
pp. 717-721
Author(s):  
Sangeetha Krishnamoorthy ◽  
K. Rajan ◽  
K.R. Senthil Kumar ◽  
M. Prabhahar

This paper investigates the performance and emission characteristics of 20% cashew nut shell liquid (CNSL)-diesel blend (B20) in a direct injection diesel engine. The cashew nut shell liquid was prepared by pyrolysis method. The test was conducted with various nozzle opening pressures like 200 bar, 225 bar and 250 bar at different loads between no load to full load. The results showed that the brake thermal efficiency was increased by 2.54% for B20 with 225 bar at full load. The CO and smoke emissions were decreased by 50% and 14% respectively and the NOx emission were decreased slightly with 225 bar injection pressure compared with 200 bar and 250 bar at full load. On the whole, it is concluded that the B20 CNSL blend can be effectively used as a fuel for diesel engine with 225 bar injection pressure without any modifications.

2014 ◽  
Vol 984-985 ◽  
pp. 893-899 ◽  
Author(s):  
S. Santhanakrishnan ◽  
S. Jose

This paper presents the properties and application of cashew nut shell oil as blend component for diesel in compression ignition engine. Experimental tests were carried out in a single cylinder, four stroke, direct injection, compression ignition engine fueled with cashew nut shell oil blends. During the experiments, the performance and emission characteristics of the diesel engine was analyzed and compared with the neat diesel fuel performance.


2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


2013 ◽  
Vol 768 ◽  
pp. 238-244
Author(s):  
T. Pushparaj ◽  
C. Lalithmuneendirakumar ◽  
S. Ramabalan

The purpose of this study is to investigate the impact of bio fuel enhancer additive added to 20% cashew nut shell liquid (CNSL) biodiesel blended with No.2 diesel fuel, in terms of the performance and exhaust emissions on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1500 rpm. The influence of blends on carbon monoxide (CO), nitrogen oxide (NO), carbon dioxide (CO2), hydrocarbon emission and smoke opacity were investigated. . The experimental results showed that the bio fuel enhancer additive improves the performance parameters and decreases CO emission by 13% and HC emission by 15% as compared to biodiesel. Bio Fuel Enhancer (BFE) additive reduces the NO emission remarkably by 55% as compared to biodiesel.


2014 ◽  
Vol 984-985 ◽  
pp. 924-931 ◽  
Author(s):  
T. Pushparaj ◽  
M.Anto Alosius ◽  
S. Ramabalan

Vegetable oils are a potential alternative to partial or total substitution of diesel fuels. In this study, we used diethyl ether as an additive to investigate the possible use of increased percentages of biodiesel in diesel engine without any retrofitting. Biodiesel was made by pyrolysis process. Cashew nut shell liquid (CNSL) was selected for biodiesel production. Number 2 diesel fuel containing 20% biodiesel and 80% diesel fuel, is called here as B20. The effects of diethyl ether, blended with B20 in 5, 10, 15 % by volume were used in a single cylinder, four strokes direct injection diesel engine. The effect of test fuels on engine torque, power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, were ascertained by performance tests. The influence of blends on CO, CO2, HC, NO and smoke opacity were evaluated by emission tests. The experimental results showed that the exhaust emissions were fairly reduced for 10% diethyl ether with B20; especially the NO is reduced remarkably by 69.4% while comparing B20.


2014 ◽  
Vol 592-594 ◽  
pp. 1714-1718 ◽  
Author(s):  
A. Dhanamurugan ◽  
R. Subramanian

Fuel injection pressures in diesel engines play an important role to distribute the fuel jet quickly and to form a uniform gas mixture after fuel injection in order to reduce fuel consumption and emissions. In this study, an attempt has been made to study the effect of injection pressure on a single cylinder direct injection diesel engine fueled with diesel, diesel – bael biodiesel blend (B20) and methyl ester of bael (Aegle marmelos) seed oil with injection pressures of 220,230,240 and 250 bar. Increasing the injector opening pressure has been found to increase brake thermal efficiency and reduce CO, HC and smoke emissions significantly. The optimum injection pressure was found to be 240 bar for bael seed biodiesel.


2015 ◽  
Vol 787 ◽  
pp. 751-755
Author(s):  
P. Vithya ◽  
V. Logesh

The use of fossil fuel is increasing drastically due to its consumption in all consumer activities. The utility of fossil fuel depleted its existence, degraded the environment and led to reduction in underground carbon resources. Hence the search for alternative fuels is paying attention for making sustainable development, energy conservation, efficiency and environmental preservation. The worldwide reduction of underground carbon resources can be substituted by the bio-fuels. The researchers around the world are finding the alternate fuel that should have the least impact on the environment degradation. This paper aims at finding an alternative for diesel and reducing the pressure on its existing demand. This study aimed at using two types of oil mixtures namely cashew nut shell oil and camphor oil mixed with diesel, turpentine oil mixed with diesel in different proportions as fuel in twin cylinder four stroke diesel engine. Performance and emission analysis have been performed by using exhaust gas analyzer in the oil samples. It was observed that 40% cashew nut shell oil and 10%camphor oil mixed with 50% diesel, 50% turpentine oil mixed with 50% diesel shows the better engine performance and also less emissions.


Sign in / Sign up

Export Citation Format

Share Document