Research on Lubrication Properties of Water-Lubricated Rubber Bearing Based on Fluid Structure Interaction

2011 ◽  
Vol 79 ◽  
pp. 159-165 ◽  
Author(s):  
Ru Yi Wang ◽  
Zheng Lin Liu ◽  
Yong Jin

The 3D computational fluid dynamics (CFD) model and fluid structure interaction (FSI) model of water-lubricated rubber bearing with 10 axial grooves was built by ADINA and the influences of axial velocity, rotating speed on deformation of bearing bush and distribution of water film pressure are researched in this article. The results show that elastic deformation of bearing bush reduces water film pressure relative to rigid assumption; with the increasing of axial velocity, the deformation of bearing bush and water film pressure increases; and the axial velocity has a obvious influence on the front of bearing bush and water film pressure; with the increasing of bearing rotating speed, the deformation of bearing bush and water film pressure raises, but the deformation of bearing bush and water film pressure in water grooves are almost close to zero.

2009 ◽  
Vol 113 (1141) ◽  
pp. 165-175
Author(s):  
Y. Cao ◽  
Z. Wu ◽  
Q. Song ◽  
J. Sheridan

Abstract According to multi-node model, the dynamics equations of conical parachute system for simulating shape deformation process of the flexible canopy in the opening process were established. With the combination of dynamics equations code and computational fluid dynamics (CFD) software, the fluid-structure interaction investigation of the conical parachute was carried out. Also the change of parachute shape and flow field, inflation time, the rate of descent, the distance of descent, and other relevant data were achieved. This paper has focused on analysing vortex structure of the flow field in the opening process of conical parachute, and laid the foundation for studying mechanics mechanism of flow field variation of conical parachute in future.


Author(s):  
Q. Li ◽  
H. Z. Liu ◽  
Z. Zhuang ◽  
S. Yamaguchi ◽  
M. Toyoda

A partitioned coupling algorithm is presented in this paper to solve the dynamic large-displacement fluid-structure interaction (DFSI) problems. In this algorithm, the program based on arbitrary Lagrangian Eulerian (ALE) and fractional two-step method is developed to calculate computational fluid dynamics (CFD) and computational mesh dynamics (CMD). ABAQUS is used to calculate computational structure dynamics (CSD). Some user subroutines are implemented into ABAQUS and the data are exchanged among CSD, CFD and CMD. Numerical results including elephant foot bulging (EFB) of the liquid storage tank are obtained under dynamic waveform.


2021 ◽  
Vol 7 (1) ◽  
pp. 31
Author(s):  
Sergio Roget ◽  
Marcos Lema ◽  
Anne Gosset

The main objective of this work is the development of a Computational Fluid Dynamics model coupled with a structural code for the simulation and optimization of fishing gears. As fishing nets are highly deformable structures under the influence of incident water, the use of merely empirical correlations for hydrodynamic forces, such as those used in many structural codes, does not provide precise predictions for their behaviour. The coupling between the structural problem and the hydrodynamic effects makes it necessary to tackle the problem through a new “fluid–structure interaction” approach, which is described here. Preliminary results obtained with the CFD model are also presented.


2009 ◽  
Vol 113 (1141) ◽  
pp. 191-200 ◽  
Author(s):  
Y. Cao ◽  
Z. Wu ◽  
Q. Song ◽  
J. Sheridan

Abstract According to multi-node model, the dynamics equations of conical parachute system for simulating shape deformation process of the flexible canopy in the opening process were established. With the combination of dynamics equations code and computational fluid dynamics (CFD) software, the fluid-structure interaction investigation of the conical parachute was carried out. Also the change of parachute shape and flow field, inflation time, the rate of descent, the distance of descent, and other relevant data were achieved. This paper has focused on analysing vortex structure of the flow field in the opening process of conical parachute, and laid the foundation for studying mechanics mechanism of flow field variation of conical parachute in future.


Author(s):  
K. W. Paczkowski ◽  
P. Zhang ◽  
R. Rogers ◽  
N. Richardson

In the offshore drilling, during emergency disconnect scenario the drilling operation must not be maintained and forced LMRP disconnect procedure takes place [1,2]. Such procedure allows drilling mud to interact with seawater. The paper presents hydrodynamic behavior of a drilling riser when mud is retained and not interacted with seawater. A two-way coupled fluid-structure interaction (FSI) model between a simplified drilling riser structure and mud fluid was studied through techniques of computational fluid dynamics (CFD). The volume of fluid (VOF) hydrodynamics model was used with commercially available software STAR-CCM+ [3]. A 3D finite element (FE) model of a drilling riser was created in FE software ABAQUS [4] to determine the stress and deflection of structural parts of the model due to hydrodynamic loads. In the model, the compressibility [5] and non-linear behavior of the mud was included. The dynamic frequencies of the two domains and possible resonance of the coupled system were investigated. The aim of the study was to verify the dynamic behavior of a riser system with a drilling mud enclosed within the system. The authors of this paper know no similar study of such a problem.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 509 ◽  
Author(s):  
Gilberto Santo ◽  
Mathijs Peeters ◽  
Wim Van Paepegem ◽  
Joris Degroote

The effect of a wind gust impacting on the blades of a large horizontal-axis wind turbine is analyzed by means of high-fidelity fluid–structure interaction (FSI) simulations. The employed FSI model consisted of a computational fluid dynamics (CFD) model reproducing the velocity stratification of the atmospheric boundary layer (ABL) and a computational structural mechanics (CSM) model loyally reproducing the composite materials of each blade. Two different gust shapes were simulated, and for each of them, two different amplitudes were analyzed. The gusts were chosen to impact the blade when it pointed upwards and was attacked by the highest wind velocity due to the presence of the ABL. The loads and the performance of the impacted blade were studied in detail, analyzing the effect of the different gust shapes and intensities. Also, the deflections of the blade were evaluated and followed during the blade’s rotation. The flow patterns over the blade were monitored in order to assess the occurrence and impact of flow separation over the monitored quantities.


2013 ◽  
Author(s):  
Robert Ranzenbach ◽  
Dave Armitage ◽  
Adolfo Carrau

Most IRC 52 based upon existing TP52 retain their original rig proportions and mainsail girths to avoid the cost and disruption of a rig change and to not disturb he finely tuned yaw balance. It is not obvious whether the mainsail proportions essentially dictated by the TP52 box rule (aggressively square topped mainsails) are actually optimal under IRC even though IRC 52 with TP52 style mainsails tend to successfully compete under IRC. To determine the answer to this question, a mainsail planform investigation was performed as collaboration between Botin Partners and Quantum Sail Design Group. The mainsail planform investigation utilized a Fluid Structure Interaction (FSI) program developed by Quantum Sail Design Group (QSDG) known as IQ Technology (IQT) that consists of sail geometry definition, inviscid Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA), Velocity Prediction Program (VPP), and shape validation (based upon VSPARS) modules. Applicability of the inviscid CFD was validated by comparison to a limited number of viscous flow solutions, i.e. RANS analysis, performed by Porto Ricerca. Two mainsails were considered, a conventional TP52 style and an alternative that was chosen to be closer to the IRC default girth values. To maintain sail area and yaw balance, the alternative mainsail had a longer P and E. The focus of the study was exclusively on upwind performance, i.e. to maximize upwind Velocity Made Good (VMG). Results from the study suggest that a TP52 style mainsail is not optimal under IRC. The combination of rating reduction and predicted performance advantages over a wide range of wind speeds suggest that an alternative mainsail with larger P and E with girth values closer to the IRC default values is a superior choice for an IRC 52.


Sign in / Sign up

Export Citation Format

Share Document