Performance of Distributed Generation (DG) towards Dynamic Voltage Restorer (DVR) in Mitigating Voltage Dips

2015 ◽  
Vol 793 ◽  
pp. 3-8
Author(s):  
Melaty Amirruddin ◽  
Muhd Hafizi Idris ◽  
A.H. Hana ◽  
N.S. Noorpi ◽  
O. Mardianaliza ◽  
...  

This article presents the performance of Distributed Generation (DG) towards Dynamic Voltage Restorer (DVR) in mitigating voltage dips. An investigation was conducted to explore the effect of DG with the test system and the results will be analyzed during line to ground fault with DVR contains DG and without DG. The percentages of the voltage dips that occur will be compared between all the test systems. From this analysis of voltage dips percentage, the effectiveness of the DG towards DVR in mitigating voltage dips can be obtained clearly. The simulation of the test system will be done using Power System Computer Aided Design (PSCAD) software.

Author(s):  
Kiarash Azizi ◽  
Murtaza Farsadi ◽  
Mohammad Farhadi Kangarlu

<span>The capability of low-voltage ride-through (LVRT) of doubly fed induction generator (DFIG) has been considered as an essence for grid code requirements. Any unbalance on the grid side causes the rotor current of the generator to rise which leads to saturate the dc-link of the back-to-back converter or even destroy it. To meet this requirement, a dynamic voltage restorer (DVR) without dc-link energy storage elements is utilized to compensate any disturbance imposed to the DFIG wind turbine system. On the time of any disturbance or fault, DFIG and DVR are properly controlled in order to compensate the specified faulty phase uninterruptedly. DVR is connected in series to the grid and by injecting instantaneous compensating voltage, prevents the stator voltage from rapid changing; consequently, the rotor side converter can accomplish its normal operation. As voltage dips are the most common grid faults subjected to DFIGs, this paper investigates both symmetrical and asymmetrical voltage dips caused by grid faults. The independent and instantaneous phase voltage compensation, less volume, weight, and cost are the merits to utilize the proposed DVR along with DFIG wind turbines. PSCAD/EMTDC based simulations verifies the capabilities of the proposed technique for the LVRT capability of DFIG.</span>


2013 ◽  
Vol 768 ◽  
pp. 338-343 ◽  
Author(s):  
Shakti Prasad Mishra ◽  
Lisby Varghese ◽  
J. Preetha Roselyn ◽  
D. Devaraj

This paper presents the modelling and simulation of Dynamic Voltage Restorer (DVR) for mitigation of voltage sags and swells which are the major problems and issues on non linear loads.The Dynamic Voltage Restore (DVR) has become popular as a cost effective solutions for the protection of sensitive loads from voltage sags and swells.. The control of compensation voltages in DVR based on a-b-c to d-q-0 algorithm is discussed. The proposed control technique is cost effective and simple to design. Computer simulations are carried out in a suitable test system to investigate the effectiveness of control technique by using MATLAB/SIMULINK software.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5742
Author(s):  
Emiyamrew Minaye Molla ◽  
Cheng-Chien Kuo

The advancement of power electronic-based sensitive loads drives the power utilities’ devotion to power quality issues. The voltage disturbance could be happening due to fault conditions, switching of loads, energizing of transformers, or integration of highly intermittent energy sources such as PV systems. This research work attempts to enhance the voltage fluctuation of a sensitive load connected to a grid-integrated PV system using a battery-based dynamic voltage restorer (DVR). The proposed battery energy storage-based DVR has two separate controlling stages that are implemented at the DC–DC buck/boost converter of the battery and voltage source converter (VSC) system. Charging and discharging of the battery is operated based on the state-of-charge (SOC) value of the battery and the measured root mean square (RMS) voltage at the point of common coupling (PCC). The VSC of the DVR detection and reference generation control is done appropriately. In the detection control of the VSC, a combination of RMS and dq0 measurement techniques is used, whereas in the reference generation control, pre-fault strategy is implemented to restore both phase jump and magnitude distortions. Symmetrical and asymmetrical voltage sags scenarios are considered and the compensation demonstration is carried out using power system computer-aided design (PSCAD/EMTDC) software.


Sign in / Sign up

Export Citation Format

Share Document