Investigation of Fatigue Behaviour and Notch Sensitivity of Ti-6Al-4V

2011 ◽  
Vol 80-81 ◽  
pp. 7-12 ◽  
Author(s):  
Shabnam Hosseini ◽  
Mohammad Bagher Limooei

In this research, fatigue behaviour of Ti-6Al-4V alloy was investigated for smooth and notched specimens with stress concentration factor(Kt) 3.6 and 4.1.This investigation was conducted for various diameter bars having different ultimate strength.Rotating bending fatigue test at R= -1 was emploied for this research. Notch sensitivity data was compared with those of steels. The result indicated that the presence of notch in this alloy has a different amount of sensitivity when the notch specimens were subjected to high cycle fatigue (HCF) and low cycle fatigue(LCF) tests.The notch sensitivity of this alloy was shown generally to be much lower than steel alloys with similar ultimate strength values. Therefore,considering the low sensitivity to notch of this alloy, can be recommended for applications with the presence of notch such as biomedical application

2015 ◽  
Vol 786 ◽  
pp. 105-110
Author(s):  
A.K.M. Asif Iqbal ◽  
Yoshio Arai

The low-cycle fatigue (LCF) behavior specially the fracture initiation mechanism in a cast hybrid metal matrix composite (MMC) was investigated in this research. Conventional three point bending fatigue test was carried out on a rectangular bar smooth specimen. Factographic analysis was conducted to observe the fracture initiation site. Experimental results showed that microcracks in LCF initiated at the particle–matrix interface which was located in the hybrid clustering region. Due to continued fatigue cycling, the interface debonding occurred, created additional secondary microcracks and the microcrack coalesced with other nearby microcracks caused the final fracture.


1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


1982 ◽  
Vol 68 (3) ◽  
pp. 471-476 ◽  
Author(s):  
Toshinori NAKAMURA ◽  
Masatake TOMINAGA ◽  
Hirokazu MURASE ◽  
Yukio NISHIYAMA

2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


Sign in / Sign up

Export Citation Format

Share Document