1⁄4 Car Model for Suspension Trim Corrector Performances Evaluation

2016 ◽  
Vol 823 ◽  
pp. 205-210
Author(s):  
Adrian Ioan Niculescu

The paper presents a complex quarter car model obtained with ADAMS software, View module, useful in the first stage of suspension dimensioning and optimization.The model is equipped with compression and rebound stopper buffer and suspension trim corrector.The proposed quarter car model with two degrees of freedom (wheel and body) performs all these goals allowing changing:Geometrical elementsPosition of equilibrium, depending on vehicle load;Trim correction;Elastic and dissipative characteristics of the suspension and tire;Suspension stroke;Road profile, assessed either by simple or summation of harmonic functions or reproducing real roadsBuffers (for stroke limitation) position and characteristics;The models developed provide information on:Vertical stability assessed by vertical movements of the body and the longitudinal and transversal stability evaluated based on adherence characterized by wheel ground contact force and frequency of soil detachment wheel.Comfort assessed on the basis of body vertical acceleration and collision forces to the stroke ends.The body-road clearanceThe trim corrector efficiencyAll above performances evaluated function the road unevenness, acceleration, deceleration, turning regime.The damping characteristic is defined by damping forces at different speed for each strokes respectively one for rebound and other for compression.The contact force road-wheel is defined based tire rigidity law.The stopper buffer forces on rebound and compression are defined based each specific rigidity characteristics.The road excitation is realized with a function generator.The software allow the model evolution visualisation in real time, also generating the diagrams of displacements, forces, accelerations, speeds, for each elements or for relative evolution between diverse elements.The simulation was realized for unloaded and fully loaded car using a road generated by a sum of harmonic functions presented in equation (8).The excitation covers the specific frequencies area, being under the body frequencies up to the wheel proper frequencies.The realized ¼ car model, have reached the goal to evaluate the suspension trim correction advantages.The simulations confirm the trim corrector increases the suspension performances, thus for the analyzed case the trim corrector increase simultaneous:Body-ground clearance (evaluated by body higher increasing) between 18.5÷55.1 %Body stability (evaluated by maximal body displacement) between 9.8÷11.4 %Body comfort (evaluated by maximal body acceleration) between 3.4÷35.5 %Adherence (evaluated by maximal and RMS wheel-groundcontact force variation) between 7.0÷12.1 %Body and axles protection (evaluated by buffer strike force) between 10.8÷38.2 %

2012 ◽  
Vol 19 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Xin-Jie Zhang ◽  
Mehdi Ahmadian ◽  
Kong-Hui Guo

Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS) responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.


2008 ◽  
Vol 13 (7) ◽  
pp. 1373-1383 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec ◽  
Michael I. Friswell ◽  
Kazimierz Szabelski

Author(s):  
Long Wu ◽  
Lei Zuo

In vehicle dynamics researchers traditionally investigate the suspension performance based on a quarter car model and then reestablish a comprehensive model for the full car by considering additional degrees of freedom (DOF). Based on the derivation of the coupling ratios between the sprung mass of a full car and four sprung masses of quarter cars, the analysis of a full vehicle dynamics with fourteen DOFs in vertical and lateral directions is possible. The full car model can be expressed by four independent quarter car models. An analysis method will be investigated in order to provide a novel performance estimation for a full vehicle suspension. The case study shows that the vibrations of a full vehicle can be quantitatively obtained based on the test results of quarter suspensions.


Author(s):  
Sunil Kumar Sharma ◽  
Rakesh Chandmal Sharma

A semi-active suspension system using Magnetorheological (MR) damper overcomes all the inherent limits of passive and active suspension systems and combines the advantages of both. This paper gives a concise introduction to the suspension system of a passenger vehicle which is presented along with the analysis of semi-active suspension system using MR fluid dampers based on Bingham model. MR dampers are filled with MR fluids whose properties can be controlled by applying voltage signal. To further prove the statement, a quarter car model with two degrees of freedom has been used for modeling the suspension system the sprung mass acceleration of passive suspension system has been compared with the semi-active suspension system using the Bingham model for MRF damper. Simulink/MATLAB is used to carry out the simulation. The results drawn show that the semi-active suspension system performed better than the passive suspension system in terms of vehicle stability.


PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10893-10894 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec

Author(s):  
Jenny Jerrelind ◽  
Ines Lopez Arteaga ◽  
Lars Drugge ◽  
Leif Kari

This work presents an analysis of the effects of non-linear characteristics of a top mount bushing in the wheel suspension of a vehicle when evaluating vehicle characteristics such as comfort and handling. The investigation is performed by comparing simulation results from a quarter car model when using a non-linear bushing model and an approximated linear bushing model. It is revealed when analysing the results that there are differences in the response when comparing measures such as sprung mass acceleration, rattle space ratio and tyre-ground contact force. The conclusion is that the more detailed bushing model mainly affects the acceleration levels especially at high frequencies where the linear model underestimates the acceleration. The rattle space ratio and tyre-ground contact force are also affected but not to the same extent.


Author(s):  
Mehdi Ahmadian ◽  
Emmanuel Blanchard

An analytical study that evaluates the response characteristics of a two-degree-of freedom quarter-car model using passive and semi-active dampers is provided as an extension to the results published by Chalasani for active suspensions. The behavior of a semi-actively suspended vehicle is evaluated using the hybrid control policy, and compared to the behavior of a passively suspended vehicle. The relationship between vibration isolation, suspension deflection, and road-holding is studied for the quarter-car model. Three performance indices are used as a measure of vibration isolation (which can be seen as a comfort index), suspension travel requirements, and road-holding quality. These indices are based on the mean square responses to a white noise velocity input for three motion variables: the vertical acceleration of the sprung mass, the deflection of the suspension, and the deflection of the tire, respectively. The results of this study indicate that the hybrid control policy yields better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2010 ◽  
Vol 49 (3) ◽  
pp. 463-480 ◽  
Author(s):  
Damien Maher ◽  
Paul Young

Sign in / Sign up

Export Citation Format

Share Document