Non-Dimensional Analysis of the Performance of Semiactive Vehicle Suspensions

Author(s):  
Mehdi Ahmadian ◽  
Emmanuel Blanchard

An analytical study that evaluates the response characteristics of a two-degree-of freedom quarter-car model using passive and semi-active dampers is provided as an extension to the results published by Chalasani for active suspensions. The behavior of a semi-actively suspended vehicle is evaluated using the hybrid control policy, and compared to the behavior of a passively suspended vehicle. The relationship between vibration isolation, suspension deflection, and road-holding is studied for the quarter-car model. Three performance indices are used as a measure of vibration isolation (which can be seen as a comfort index), suspension travel requirements, and road-holding quality. These indices are based on the mean square responses to a white noise velocity input for three motion variables: the vertical acceleration of the sprung mass, the deflection of the suspension, and the deflection of the tire, respectively. The results of this study indicate that the hybrid control policy yields better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars.

2012 ◽  
Vol 19 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Xin-Jie Zhang ◽  
Mehdi Ahmadian ◽  
Kong-Hui Guo

Inerters have become a hot topic in recent years especially in vehicle, train, building suspension systems, etc. Eight different layouts of suspensions were analyzed with a quarter-car model in this paper. Dimensionless root mean square (RMS) responses of the sprung mass vertical acceleration, the suspension travel, and the tire deflection are derived which were used to evaluate the performance of the quarter-car model. The behaviour of semi-active suspensions with inerters using Groundhook, Skyhook, and Hybrid control has been evaluated and compared to the performance of passive suspensions with inerters. Sensitivity analysis was applied to the development of a high performance semi-active suspension with an inerter. Numerical simulations indicate that a semi-active suspension with an inerter has much better performance than the passive suspension with an inerter, especially with the Hybrid control method, which has the best compromise between comfort and road holding quality.


Author(s):  
Mehdi Ahmadian ◽  
Emmanuel Blanchard

This paper extends the results for active suspensions obtained by Chalasani in 1986, by evaluating the potential of semiactive suspensions for improving ride performance of passenger vehicles. Numerical simulations are performed on a seven-degree-of-freedom full vehicle model in order to confirm the general trends found for a quarter-car model, used by the authors in an earlier study. This full car model is used not only to study the heave, but also the pitch and roll motions of the vehicle for periodic and discrete road inputs. The behavior of a semi-actively suspended vehicle is evaluated using the hybrid control policy, and compared to the behavior of a passively-suspended vehicle. The results of this study obtained with the periodic inputs indicate that the motion of the quarter-car model is not only a good approximation of the heave motion of a full-vehicle model, but also of the pitch and roll motions since both are very similar to the heave motion. The results obtained with the discrete road input show that, for the example used in this study, the hybrid configuration clearly yields better results than the passive configuration when the objective is to minimize different deflections, angles, and accelerations at the same time.


2016 ◽  
Vol 823 ◽  
pp. 205-210
Author(s):  
Adrian Ioan Niculescu

The paper presents a complex quarter car model obtained with ADAMS software, View module, useful in the first stage of suspension dimensioning and optimization.The model is equipped with compression and rebound stopper buffer and suspension trim corrector.The proposed quarter car model with two degrees of freedom (wheel and body) performs all these goals allowing changing:Geometrical elementsPosition of equilibrium, depending on vehicle load;Trim correction;Elastic and dissipative characteristics of the suspension and tire;Suspension stroke;Road profile, assessed either by simple or summation of harmonic functions or reproducing real roadsBuffers (for stroke limitation) position and characteristics;The models developed provide information on:Vertical stability assessed by vertical movements of the body and the longitudinal and transversal stability evaluated based on adherence characterized by wheel ground contact force and frequency of soil detachment wheel.Comfort assessed on the basis of body vertical acceleration and collision forces to the stroke ends.The body-road clearanceThe trim corrector efficiencyAll above performances evaluated function the road unevenness, acceleration, deceleration, turning regime.The damping characteristic is defined by damping forces at different speed for each strokes respectively one for rebound and other for compression.The contact force road-wheel is defined based tire rigidity law.The stopper buffer forces on rebound and compression are defined based each specific rigidity characteristics.The road excitation is realized with a function generator.The software allow the model evolution visualisation in real time, also generating the diagrams of displacements, forces, accelerations, speeds, for each elements or for relative evolution between diverse elements.The simulation was realized for unloaded and fully loaded car using a road generated by a sum of harmonic functions presented in equation (8).The excitation covers the specific frequencies area, being under the body frequencies up to the wheel proper frequencies.The realized ¼ car model, have reached the goal to evaluate the suspension trim correction advantages.The simulations confirm the trim corrector increases the suspension performances, thus for the analyzed case the trim corrector increase simultaneous:Body-ground clearance (evaluated by body higher increasing) between 18.5÷55.1 %Body stability (evaluated by maximal body displacement) between 9.8÷11.4 %Body comfort (evaluated by maximal body acceleration) between 3.4÷35.5 %Adherence (evaluated by maximal and RMS wheel-groundcontact force variation) between 7.0÷12.1 %Body and axles protection (evaluated by buffer strike force) between 10.8÷38.2 %


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Lahcen Mokni ◽  
Mohamed Belhaq

Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.


Author(s):  
A. Narimani ◽  
M. F. Golnaraghi

Semi-active isolators offer significant improvement in performance over passive isolators. These systems benefit from the advantages of active systems with the reliability of the passive systems. In this work we study a vibration isolation system with a magnetorheological (MR) damper. The experimental investigation of the mechanical properties of a commercially available linear MR damper (RD-1005-3) was conducted next. The mathematical Bouc-Wen model was adopted to predict the performance of MR damper. In addition, a modified Bingham model has been developed to characterize the damper behavior more accurately and efficiently. The measured hysteresis characteristics of field-dependent damping forces are compared with the simulation results from the described mathematical models. The accuracy of a damping-force controller using the proposed method is also demonstrated experimentally. Finally, a scaled quarter car model is set up to study the performance of the control strategy. The experimental results show that with the semi-active control the vibration of the quarter car model is well controlled.


Author(s):  
Sakshi Sharma ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma ◽  
Srihari Palli ◽  
...  

In cases where the natural frequencies of vibrations of a vehicle system are closed to the excitation frequencies from the road surface, dynamic vibration absorber provides the vibration isolation by shifting the resonant frequencies of the system. In the present work, the performance of a dynamic vibration absorber is evaluated with two degrees of freedom quarter car model of a road vehicle system when excited with deterministic inputs. The transmissibility of vibrations from the track to the sprung mass, the transfer function of sprung mass acceleration, the transfer function of suspension deflection and the transfer function of tire deflection is determined.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2010 ◽  
Vol 49 (3) ◽  
pp. 463-480 ◽  
Author(s):  
Damien Maher ◽  
Paul Young

Sign in / Sign up

Export Citation Format

Share Document