Axial-Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack

2016 ◽  
Vol 847 ◽  
pp. 415-422
Author(s):  
Giuseppe Carlo Marano ◽  
Rita Greco

This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.

2017 ◽  
Vol 3 (10) ◽  
pp. 929
Author(s):  
Mohannad Husain Al-Sherrawi ◽  
Hamza M. Salman

No attempts have been made in developing the N-M interaction diagram for reinforced concrete columns strengthened with steel jackets using the plastic stress distribution method. Therefore, this paper presents an analytical model to construct the N-M interaction diagram for reinforced concrete columns strengthened with steel jackets using the plastic stress distribution method after assuming the behavior of strengthened column to be like composite column and including the effects of confinement on concrete compressive strength. The proposed model was compared with experimental results. The comparisons showed that the model is conservative and it reveals the ultimate strength of the strengthened column. A parametric study has been also carried out to investigate the influence of various parameters on the N-M interaction diagram of the strengthened column. These parameters were: dimensions of steel angle, yield stress of the steel angles, concrete compressive strength and the size of the reinforcement bars used in RC columns. The results made clear the effects of these parameters on the N-M interaction diagram, and encouraged the use of the model in preliminary strengthening studies.


2022 ◽  
Vol 22 (1) ◽  
pp. 201-222
Author(s):  
Éverton Souza Ramos ◽  
Rogério Carrazedo

Abstract This paper presents a numerical study about the effects of chloride-induced corrosion on the service life of structures. A two-dimensional geometrically nonlinear mechanical model based on Finite Element Method (FEM) was developed for reinforced concrete structures. The corrosion initiation stage was evaluated by Fick's diffusion laws. The corrosion propagation was carried out by deterministic models based on Faraday's law. Pitting corrosion was simulated in the reinforcements by pit elements, distributed longitudinally on the steel rebars, which degrade the physical properties over time. The service life was determined by the crack width.Two parametric analyses were performed. In the first analysis, five models were created with a variablecover thickness and water/cement ratio (w/c). In the second analysis, the reduction in yield stress due to corrosion was considered.The results showed that the concrete cover thicknessand the w/c ratio significantly influence the service life. The reduction of the cover thickness from 30 mm to 25 mm resulted in 21.26% reduction in service life, whilethe increase in the w/c ratio from 0.50 to 0.55 caused 32.98% reduction in service life of the structural element analyzed.


2013 ◽  
Vol 13 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Hosoon Choi ◽  
Dae Hwan Shin ◽  
Min-Sook Kim ◽  
Dae Jin Kim ◽  
Heecheul Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document