scholarly journals Creep Fatigue Life Assessment of a Pipe Intersection with Dissimilar Material Joint by Linear Matching Method

2016 ◽  
Vol 853 ◽  
pp. 366-371
Author(s):  
Daniele Barbera ◽  
Hao Feng Chen ◽  
Ying Hua Liu

As the energy demand increases the power industry has to enhance both efficiency and environmental sustainability of power plants by increasing the operating temperature. The accurate creep fatigue life assessment is important for the safe operation and design of current and future power plant stations. This paper proposes a practical creep fatigue life assessment case of study by the Linear Matching Method (LMM) framework. The LMM for extended Direct Steady Cycle Analysis (eDSCA) has been adopted to calculate the creep fatigue responses due to the cyclic loading under high temperature conditions. A pipe intersection with dissimilar material joint, subjected to high cycling temperature and constant pressure steam, is used as an example. The closed end condition is considered at both ends of main and branch pipes. The impact of the material mismatch, transitional thermal load, and creep dwell on the failure mechanism and location within the intersection is investigated. All the results demonstrate the capability of the method, and how a direct method is able to support engineers in the assessment and design of high temperature component in a complex loading scenario.

Author(s):  
Masanori Ando ◽  
Hiroshi Kanasaki ◽  
Shingo Date ◽  
Koichi Kikuchi ◽  
Kenichiro Satoh ◽  
...  

In a component design at elevated temperature, fatigue and creep-fatigue is one of the most important failure modes, and fatigue and creep-fatigue life assessment in structural discontinuities is important issue to evaluate structural integrity of the components. Therefore, to assess the failure estimation methods, cyclic thermal loading tests with two kinds of cylindrical models with thick part were performed by using an induction heating coil and pressurized cooling air. In the tests, crack initiation and propagation processes at stress concentration area were observed by replica method. Besides those, finite element analysis (FEA) was carried out to estimate the number of cycles to failure. In the first test, a shorter life than predicted based on axisymmetric analysis. Through the 3 dimensional FEA, Vickers hardness test and deformation measurements after the test, it was suggested that inhomogeneous temperature distribution in hoop direction resulted in such precocious failure. Then, the second test was performed after improvement of temperature distribution. As a result, the crack initiation life was in a good agreement with the FEA result by considering the short term compressive holding. Through these test and FEA results, fatigue and creep-fatigue life assessment methods of Mod.9Cr-1Mo steel including evaluation of cyclic thermal loading, short term compressive holding and failure criterion, were discussed. In addition it was pointed out that the temperature condition should be carefully controlled and measured in the structural test with Mod.9Cr-1Mo steel structure.


2020 ◽  
Vol 26 ◽  
pp. 402-408
Author(s):  
A. Grbović ◽  
Ž. Božić ◽  
S. Kirin ◽  
G. Kastratović ◽  
A. Sedmak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document