Paraboloid of Revolution Part Hydromechanical Deep Drawing and Finite Element Simulation of Stress Analysis

2011 ◽  
Vol 88-89 ◽  
pp. 679-683
Author(s):  
Yong Chang ◽  
Xiang Sheng Li ◽  
Rui Li Du

Theory of Elasticity and Plasticity was used to analyzed stress of different deformation zone of part in hydromechanical deep drawing (HDD). HDD is a kind of advanced sheet metal forming method. Satisfying the need of adornment parts and auto parts and aiming at paraboloid chimney HDD with initial inverse pressure and variable blank-holder forces was studied by means of numerical simulation. The dynamic explicit analytical software DYNAFORM was employed to simulate the forming process to obtain major principal stress of the material. The blank holder force and hydraulic pressure influence on forming were studied. The load curve of blank holder force (BHF) and hydraulic pressure were optimized.

2011 ◽  
Vol 383-390 ◽  
pp. 2785-2789
Author(s):  
Naoki Horiike ◽  
Shoichiro Yoshihara ◽  
Yoshitaka Tsuji ◽  
Yusuke Okude

In the deep-drawing process, the application of low-frequency vibration to the blank material has recently been focused on with the aim of improving the friction performance between the die and the blank material. A servo-controlled press machine is suitable for applying low-frequency vibration to the blank during the deep-drawing process, because the punch speed and blank holder force (BHF) are easily controlled as process parameters by using the servo motors. In this study, a BHF with low-frequency vibration was proposed as a technique for improving deep-drawability, which is mainly affected by the friction performance and the lubricant condition. We found that the friction performance between the blank surface and the blank holder was decreased in the case of a BHF with low-frequency vibration since the lubricating oil rapidly flowed into the clearance during the forming process. Furthermore, for a BHF with low-frequency vibration, the punch force and the deformation resistance were lower than those in a deep-drawing test without low-frequency vibration.


2014 ◽  
Vol 1036 ◽  
pp. 344-348
Author(s):  
Aurelian Albut ◽  
Vlad Andrei Ciubotariu

The current work deals with numerical simulation connected to forming of a rectangular shaped part made from tailored blanks, having the welding line positioned symmetrical with respect to the part geometry. The objective was to study the relation between the blank holder force applied during forming and the thinning of the parents materials. All the parameters are fixed except the blank holder force, its variation will cause variation of the material thinning. The presented work is trying to demonstrate the important role of the blank holder force on the material thinning during the deep drawing process. It must be mentioned that both materials from the welded structure are having the same thickness (1mm). The Dynaform 5.8.1 software is used to simulate the forming process. The part obtained after each simulation is analyzed and measured to quantify the on the material thinning. All the parameters are maintained fixed except the blank holder force. The obtained results for five different binder forces (5, 10, 30, 50, 70 kN) were compared to realise the behaviour of the tailor welded blanks during deep drawing process. In the final part of this paper conclusions regarding the influence of the blank holder force on the material thinning are presented.


2010 ◽  
Vol 14 (2) ◽  
pp. 15-32 ◽  
Author(s):  
Thanasan Intarakumthornchai ◽  
Suwat Jirathearant ◽  
Sirichan Thongprasert ◽  
Pramote Dechaumphai

2012 ◽  
Vol 433-440 ◽  
pp. 666-670 ◽  
Author(s):  
Naoki Horiike ◽  
Shoichiro Yoshihara ◽  
Yoshitaka Tsuji ◽  
Yusuke Okude

In the deep-drawing process, the application of low-frequency vibration to the blank material has recently been focused on with the aim of improving the friction performance between the die and the blank material. A servo-controlled press machine is suitable for applying low-frequency vibration to the blank during the deep-drawing process, because the punch speed and blank holder force (BHF) are easily controlled as process parameters by using the servo motors. In this study, a BHF with low-frequency vibration was proposed as a technique for improving deep-drawability, which is mainly affected by the friction performance and the lubricant condition. We found that the friction performance between the blank surface and the blank holder was decreased in the case of a BHF with low-frequency vibration since the lubricating oil rapidly flowed into the clearance during the forming process. Furthermore, for a BHF with low-frequency vibration, the punch force and the deformation resistance were lower than those in a deep-drawing test without low-frequency vibration.


2012 ◽  
Vol 189 ◽  
pp. 147-151
Author(s):  
Xian Chang Mao ◽  
Hai Yan Lin

Forming process of AZ31B magnesium alloy cup parts in pressure-lubricating deep drawing was simulated by Dynaform at room temperature. The technological parameters which influence the wall thickness difference of cup parts were investigated in this paper, including internal pressure, blank holder force and punch corner radius, etc. Compared with the deformation behaviors of magnesium alloy in mechanical deep drawing and pressure-lubricating deep drawing, the wall thickness distribution of cup parts was discussed. The result shows that preferable deformation behaviors can be obtained in pressure-lubricating deep drawing when adopted adaptive technological parameters.


2013 ◽  
Vol 347-350 ◽  
pp. 1187-1191
Author(s):  
Xian Chang Mao ◽  
Lian Fa Yang ◽  
Yun Liu ◽  
Shi Yang Li

Forming effect of square parts is influenced greatly by technical parameters in hydraulic deep drawing, and it is significative to investigate the parameters. The technical parameters which influence the cold forming effect (wall thickness difference and minimum wall thickness) were introduced in detail by numerical simulation method, including the load method of blank holder force, drawing speed, hydraulic pressure, etc. Furthermore, the reasonable technological parameters were concluded and the wall thickness distribution of magnesium alloy square parts was discussed in this paper. The results show that the cold formability of AZ31B magnesium alloy square parts could be improved when adopt reasonable technological parameters and blank holder force load path in hydraulic deep drawing.


2021 ◽  
Author(s):  
Zaifang Zhang ◽  
Feng Xu ◽  
Xiwu Sun

Abstract The hydroforming technology can realize overall forming of large storage tank’s bottom, but the quality is affected by many technological parameters. In view of wrinkling and cracking defects of integral storage tank’s bottom in hydroforming, a multi-objective optimization model is established for process parameters include pre-expansion pressure, hydraulic pressure, blank holder force and fillet radius of blank holder. Based on finite element simulation, the surrogate model between process parameters and quality criteria is established using Kriging technique. NSGA-III is used to determine optimal process parameters when storage tank’s bottom reaches targets include minimum wall thickness variations, minimum fracture trend, minimum flange wrinkle and minimum wrinkle trend. Compared with Particle swarm optimization (PSO) algorithm, NSGA-III algorithm is more suitable to solve this optimization problem. The validity of this method and accuracy of the results are verified by simulation experiments.


2018 ◽  
Vol 875 ◽  
pp. 24-29
Author(s):  
Aekkapon Sunanta ◽  
Surasak Suranuntchai

Finite Element Method (FEM) is one of the most useful techniques to analyze problems in metal forming process because of this technique can reduce cost and time in die design and trial step [1]. This research is aimed to predict the optimal parameters in order to eliminate cracks and wrinkles on automotive deep drawing product “Shell Bar RR Impact RH/LH”. The material was made from high strength steel JSC440W sheet with thickness 1.8 mm. The parameters that had been investigated were blank holder force (BHF) and drawbead restraining force (DBRF). In order to simplify the process, punch and die in the simulation were assumed to be a rigid body, which neglected the small effect of elastic deformation. The material properties assumed to be anisotropic, behaved according to the constitutive equation of power law and deformed elastic-viscoplastic, which followed Barlat 3 components yield function. Most of the defects such as cracks and wrinkles were found during the processes on the parts. In the past, the practical productions were performed by trial and error, which involved high production cost, long lead time and wasted materials. From the results, when decreased blank holder force to 30 tons, cracks on the part were removed but wrinkles had a tendency to increase in part area because of this part is the asymmetrical shape. Finally, applying about drawbead restraining force at 154.49 and 99.75 N/mm could improve product quality. In conclusion, by using the simulation technique, the production quality and performance had been improved.


Author(s):  
Walid Ghennai ◽  
Ouzine Boussaid ◽  
Hocine Bendjama ◽  
Noureddine Guersi

The aim of this work is to study the plastic instabilities occurring on the stamped sheets during deep drawing process. The analysis of the plastic deformation of the material showed that the deformation occurs in bi-axial extension at the bottom of the punch due to thinning of the sheet, in local necking together at the vertical wall level of the sheet and below the blank holder due to thickening of the sheet. As a first step, an experimental characterization of the material is undertaken, whose experimental tests made it possible to determine the fundamental characteristics of the material. In the second step, a study of the material behaviour during forming process by numerical simulation using Abaqus finite element code is proposed. The various simulations undertaken showed the variation of the two parameters; the blank holder force and the friction effect. The blank holder force and friction, applied respectively to the blank flange region and between the tool-blank surfaces, make it possible to optimize the deformation limits and to repel any instability which may appear on the material in deep drawing. The simulations carried out on Abaqus code allow to visualize the material behaviour during deformation, by locating the thinning and necking zones on the sheet and from there, in order to locate areas at risk of failure. An optimization of the process is proposed by varying the considered parameters in a validated numerical model. Satisfactory results have been obtained which clearly show the failure and the safe zones.


Sign in / Sign up

Export Citation Format

Share Document