Seismic Damage Analysis and Reinforcement Measures Research of a Long-Span Structure

2011 ◽  
Vol 94-96 ◽  
pp. 1338-1343
Author(s):  
Yong Jun Deng ◽  
Yong Yao ◽  
Dai Guo Chen

Abstract: Taking a Practical Big Span Stadium Project as the Background, in View of its Particularity that it Suffered Earthquake Damage and Fortification Intensity Increased after Earthquake, through the Field Detection and Finite Element Model to Analyze Earthquake Damage of Structure Caused by Wenchuan Earthquake, and Research the Feasibility of Seismic Strengthening with Hadas on the Structure Whose Fortification Intensity Increased after Earthquake. the Results Show that: 1) the Big Span Structure Severely Damage by the Earthquake, the Second Layer Is Relatively Weak Layer, Prone to Local Damage and Affect Whole Anti-seismic Performance of Structure, 2) Hadas Can Increase the Initial Stiffness and Effectively Reduce the Structure Seismic Response, Has Better Effect on Overall Reinforcement, 3) it Is Reasonable to Improve the Seismic Fortification Intensity of this Region.

2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.


2013 ◽  
Vol 663 ◽  
pp. 80-86
Author(s):  
Hai Qing Liu ◽  
Ming Ji Ma ◽  
Gui Jun Wang

More and more irregular structure appears in people's lives, while the theoretical research and disaster experience show that the irregular structure in the earthquake will produce translation and torsion coupled spatial vibration, and sometimes it will cause very serious consequences. Being based on the practical engineering -the Castle Hotel of Dalian, this text makes use of finite element analysis software--- ANSYS. By analyzing the dynamic characteristics and seismic response, we get the self-vibration characteristics of the structure and the time history curve of top level displacement and acceleration of the structure under the effect of earthquake forces. The calculation results indicate that it is effective and reasonable to set up three-dimensional finite element model used for the analyzing of seismic response by ANSYS.


Sign in / Sign up

Export Citation Format

Share Document