Vibrating Simulation of Diesel Engine Based on Multi-Body Dynamics

2011 ◽  
Vol 97-98 ◽  
pp. 706-711 ◽  
Author(s):  
Kang Shao ◽  
Chang Wen Liu ◽  
Fong Rong Bi ◽  
Xian Feng Du ◽  
Xia Wang ◽  
...  

Taking example of a four-cylinder inline diesel engine that used in vehicle, this paper makes an assembly engine of three-dimensional that based on virtual prototype technology. While using the flexible-body dynamics simulation, the main bearing load that effect engine’s vibration will be gained. And the key point vibration response will be gained when the support part constrained. The experimental results coincide with the simulation results shows the correction of the simulation analysis. The initial stage of the vibration can be predicted by using the method of multi-body system analysis, and this guide the designer to identify the engine vibration.

2014 ◽  
Vol 988 ◽  
pp. 617-620
Author(s):  
Ran Ran Wang ◽  
Yan Ming Xu ◽  
Xian Bin Teng

Based on the V-type diesel engine crankshaft system, the paper combined the finite element method (fem) and multi-body dynamics method together, made a virtual simulation analysis. First, by 3d software and finite element software to establish the multi-body dynamic models of the crankshaft, bearing and piston, then simulated the actual engine working condition, and got the data such as crankshaft acceleration, velocity and displacement by the multi-body dynamics simulation analysis. By calculation, the paper found that by using the combination of finite element and multi-body simulation method, can we effectively simulate the diesel engine crankshaft dynamics characteristics.


2014 ◽  
Vol 654 ◽  
pp. 65-68
Author(s):  
Ling Jin Wang ◽  
Dan Li ◽  
Xiu Xia Lu ◽  
Pei Fan Li ◽  
Ying Jun Jia

Crankshaft is one of the key parts of the diesel engine. Several causes would be lead to the failure of the crankshaft. A novel strength analysis method is used for crankshaft high cycle fatigue simulation of the diesel engine based on flexible multi-body dynamics in this paper. In order to investigate the fatigue strength of other parts of the diesel engine at the same time, a complete coupled dynamic model of diesel engine crankshaft and block is built and coupled dynamics simulation is carried out. Then dynamics calculation results of each part is extracted for high cycle fatigue analysis and the reliability research of the crankshaft, The simulation results show that, the minimum safety factors of the crankshaft is 1.301, it meet the strength requirements, the safety factors of the block and the cap could be calculated at the same time. These suggest that this method can guide the design of the diesel engine crankshaft and has gained significant importance in practical study.


2013 ◽  
Vol 339 ◽  
pp. 425-429 ◽  
Author(s):  
Song Wang ◽  
Da Wei Liu ◽  
Wei Liu

In this paper, a detailed rigid-flexible coupling multi-body dynamic model of heavy vehicle was established using multi-body dynamics method, and B class road model was built using harmonic superposition method. Then, the platform of heavy vehicle dynamics simulation was established. The driver seat acceleration and tire dynamic load were simulated at different speeds under the input of different random road excitations. According to the ride comfort evaluation method provided by ISO2631-1, total weighted root-mean-square (RMS) acceleration evaluation method was used to evaluate the ride comfort of heavy vehicle at different ride speeds.


2011 ◽  
Vol 308-310 ◽  
pp. 1860-1864
Author(s):  
Hai Bing Xiao ◽  
Xiao Peng Xie

In this paper, ADAMS multi-body dynamics simulation was introduced in order to solve the diesel engine piston pin dynamics. Take diesel engine piston for example, the model of piston system was established based on ADAMS/Engine module. According to rotational speed of crankshaft, piston pin dynamics simulation was analyzed. Through Fast Fourier Transformation, piston pin power spectral density was got for piston pin fault diagnosis. The results show that simulation results are consistent with theory, dynamics simulation applied in fault diagnosis is feasible.


2012 ◽  
Vol 426 ◽  
pp. 213-217
Author(s):  
De Gong Chang ◽  
R. Zong ◽  
Cong Feng An

Based on multi-body dynamics theory, this paper uses ADAMS to carry on the dynamic simulation for assembly model of roller gear indexing cam mechanism in the case of frictionless and consideration of friction gap, detailed analysis of the gap generated by friction has influence on contact transmission of cam mechanism, and obtained the movement rule curves of angular velocity and angular acceleration and some valuable conclusions. It provided theoretical basis and reference for the subsequent design and research of roller gear indexing cam mechanism.


2013 ◽  
Vol 275-277 ◽  
pp. 2467-2470
Author(s):  
Tao Li ◽  
Rui Lin Wang ◽  
Long Bo Sheng

To study the influence of barrel’s deformation and vehicle velocity to certain vehicular Gatling gun, a virtual simulation with rigid-flexible coupling was established by using ADAMS/Flex module based on rigid multi-body dynamics and flexible body dynamics theories. Considering the interaction of the tires and road surface, vehicle and machine gun, the dynamic analysis and calculation of exterior ballistics were completed in various vehicle velocity condition, the muzzle response characteristics and impact position were obtained. The Model is testified rational, accuracy and effective by comparing simulating results with the experimental data of the velocity and displacement of barrel, which has laid the foundation for further simulation and structural optimization.


2013 ◽  
Vol 397-400 ◽  
pp. 1580-1588
Author(s):  
Man Lu Liu ◽  
Jing Zhang ◽  
Kuan Li

To solve the instability of track robot in the process of climbing obstacles, a track robot with passive rocker was designed and a three-dimensional model of track robot was developed by Unigraphics NX in this paper. Furthermore, the kinematic analysis was made for obstacle performance of the track robot. The virtual prototype model of the track robot with passive rocker was set up by using the tracked vehicle subsystem of multi-body dynamics simulation software RecurDyn and kinematics simulation for this robot was made. The simulation results verify the feasibility of the machine and provide some theoretical guidance for developing the obstacle performance of track robot.


2014 ◽  
Vol 950 ◽  
pp. 275-280
Author(s):  
Meng Cai ◽  
Liang Gu

TIn this paper, according to the structure characteristics and using characteristics of heavy duty truck, we use the principle of vehicle dynamics and simulation analysis method to deeply study the dynamic characteristics of heavy duty truck. And we also use the heavy duty model to carry on the optimization simulation and experimental validation for riding smoothness and handling stability. So as to guide the development and design of heavy duty truck, to get the purpose of control the dynamic performance and shorten the development cycle.


2013 ◽  
Vol 842 ◽  
pp. 351-354 ◽  
Author(s):  
Chong Kai Zhou ◽  
Ya Yu Huang ◽  
Li Ni

In order to accurately study a tracked vehicle movement on the ground in hard and soft features, this paper uses multi-body dynamics simulation software RecurDyn tracked vehicle subsystems Track (LM), establishing a three-dimensional multi-body vehicle dynamics model. For tracked vehicles at an inclination of 10 degrees slope, through the soft and hard ground steering process dynamics simulation and comparative analysis. This paper provides an accurate basis for the future in-depth research on Tracked vehicle.


Sign in / Sign up

Export Citation Format

Share Document