Cutting Ceramic Materials: Influence of Abrasive Machining and Coating Deposition on the Performance Potential

2014 ◽  
Vol 1025-1026 ◽  
pp. 317-324 ◽  
Author(s):  
Sergey Nikolaevich Grigoriev ◽  
Marina Volosova ◽  
Yury Andreevich Melnik ◽  
Natalia Cherkasova ◽  
Alina Gurkina

Ceramic cutting tools have a large potential by high speed processing of difficult-to-cut steels and alloys, however due to its fragility they don’t assure the required reliability level of cutting process. For improving the operational characteristics of the ceramic cutting tool combined treatment can be used namely the preliminary planetary grinding of the insert surface and the following deposition of the vacuum-plasma coatings (TiCr)N, (ZrCrHf)N and other.

2015 ◽  
Vol 669 ◽  
pp. 278-285
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Miroslav Kormoš ◽  
Slavko Jurko

Essential factors of each new discovery or piece of knowledge in science are predetermined, prepared and realized experiment. Every successfully realized experiment with obtained outputs and measurements indicates the gauge of asset that has been achieved by its execution. After analyzing of outputs final dependencies can be described that generalize whole experiment and allow entire process to be analytically identified. The production of bearings is very difficult process. Especially production of bearing rings is very complicated. Optimization of this process means significant savings for the company. Bearing rings are produced by turning. One of the most important parts of the turning process is cutting tool. On the base of cutting tools are determined many factors for example: quality, price, cutting speed, etc. All these factors of cutting tools are the only consequence of these cutting tools durability. Cutting tool durability determines its cutting properties and machinable ability. Specification of tool wear by means of calculation is very difficult. Durability of cutting tools is defined in standard ISO 3685. In standard ISO 3685 is definedT-vcdependence for different cutting materials and standard included process evaluation of tool durability for cutting materials made of high speed steel, sintered carbide and cutting ceramic. The article describes evaluation ofT-vcdependence on the selected type of cutting materials and theirs comparison with measured values T-vc dependence that are defined in standard ISO 3685.


2014 ◽  
Vol 616 ◽  
pp. 308-316 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Marek Prislupčák ◽  
Pavol Kokuľa

Cutting tool durability is very important cutting tool property. Especially for cutting ceramic is necessary to define durability dependence on available set of cutting speeds and to determine lifetime of tools made of cutting ceramic. Durability of cutting tools is defined in standard ISO 3685. In standard ISO 3685 is defined T-vc dependence for different cutting materials and standard included process evaluation of tool durability for cutting materials made of high speed steel, sintered carbide and cutting ceramic. Specification cutting tools durability made of cutting ceramic in machining process of steel 100Cr6 is very important for economics of small and medium-sized enterprises, because cutting tool durability is factor that significantly affects the budget of these enterprises. This problematic is determined for small and medium-sized manufacturers of bearings, because steel 100Cr6 is most commonly used for production of bearing rings 100 mm in diameter. This material is usable for actuator (actuators and reduction gears) too. Description of cutting ceramic durability could mean for bearings manufacturer determination of optimal cutting parameter with maximum possible use of tool lifetime. Standard ISO 3685 contains instructions how to create T-vc dependence for cutting tools made of cutting ceramic. In this standard are only instructions how to create T-vc dependence according to Taylor. The article compares T-vc dependencies for various cutting ceramics (Al2O3, Al2O3+ZrO2, Al2O3+TiCN) with T-vc dependence defined in standard ISO 3685, because this standard describes T-vc dependence for all entered cutting materials together.


2007 ◽  
Vol 567-568 ◽  
pp. 185-188 ◽  
Author(s):  
Miroslav Piska

Modern trends in metal cutting, high speed/feed machining, dry cutting and hard cutting set more demanding characteristics for cutting tool materials. The exposed parts of the cutting edges must be protected against the severe loading conditions and wear. The most significant coatings methods for cutting tools are PVD and CVD/MTCVD today. The choice of the right substrate or the right protective coating in the specific machining operation can have serious impact on machining productivity and economy. In many cases the deposition of the cutting tool with a hard coating increases considerably its cutting performance and tool life. The coating protects the tool against abrasion, adhesion, diffusion, formation of comb cracks and other wear phenomena.


2017 ◽  
Vol 736 ◽  
pp. 86-90 ◽  
Author(s):  
Vyacheslav Maksarov ◽  
A. Khalimonenko

The article considers the problems of forecasting the performance of cutting tools equipped with replaceable ceramic cutting bits. It is proposed to forecast the operability of ceramic tools on the ground of dependence between its performance characteristics and the microstructural parameters of the tool material. It is proposed to determine the parameters of ceramic bits microstructure by a nondestructive testing methods based on measuring the specific electrical resistance of ceramic materials. As a result of the study we have undertaken, a relationship was detected between the performance and specific electrical resistance of ceramic cutting tools.


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Chao Wang ◽  
Kai Cheng ◽  
Richard Rakowski

This paper presents smart tooling concepts applied to ultraprecision machining, particularly through the development of smart tool holders, two types of smart cutting tools, and a smart spindle for high-speed drilling and precision turning purposes, respectively. The smart cutting tools presented are force-based devices, which allow measuring the cutting force in real-time. By monitoring the cutting force, a suitable sensor feedback signal can be captured, which can then be applied for the smart machining. Furthermore, an overview of recent research projects on smart spindle development is provided, demonstrating that signal feedback is very closely correlated to the drilling through a multilayer composite board. Implementation aspects on the proposed smart cutting tool are also explored in the application of hybrid dissimilar material machining.


2011 ◽  
Vol 480-481 ◽  
pp. 317-322 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Jozef Jurko

Durability is very important property of every cutting material. This property of cutting materials defined theirs life-time. Technical science defines a lot of different factors, that they may be cause of shorter life-time of cutting tool. Maximally possible elimination of these factors is necessary for optimization of cutting materials life-time. Durability of cutting materials is defined in standard ISO 3685. The main part of standard ISO 3685 is T-vc dependence definition for selected cutting materials. One of these cuting materials contained in this standard is cutting ceramic. Standard ISO 3685 contains instructions how to create T-vc dependence for cutting tools made of cutting ceramic. In this standard are only instructions how to create T-vc dependence according to Taylor, but last part of every experiment is analytical expression of tested dependence. The article describes process how to define and analytically express T-vc dependence for cutting ceramic (Al2O3).


Author(s):  
Anatolii Chumak ◽  
Sergey Klimenko ◽  
Sergei Klimenko ◽  
Andriy Manokhin ◽  
Artem Naydenko ◽  
...  

Finishing methods of machining of superhard composite’s working elements based on cubic boron nitride BL group are considered. The results of the microgeometry formation research of the cutting inserts’ surfaces during machining by free powders of synthetic diamond, grinding wheels and a method of vibro-magnetic-abrasive machining (VMAM) are presented. It is shown that during VMAM the friction between the inserts’ surfaces and the abrasive particles result in microremoval of the material, which reduces the roughness of the cutting inserts’ surfaces. It is established that additional fine grinding with 14/10 mkm synthetic diamond powder provides the absence of microgeometry defects of the cutting inserts’ surfaces left by pre-machining. The result of high-quality rounding of cutting edges and the formation of surfaces of cutting inserts with less roughness is an increase in strength and wear resistance of metal-cutting tools in high-speed machining under conditions of significant loads.


2011 ◽  
Vol 25 (31) ◽  
pp. 4261-4264 ◽  
Author(s):  
MANABU YASUOKA

A hard film coat can improve a tool's performance. In this study, the frictional properties of an uncoated tool and a coated tool with TiN were measured against that of SCM440 (42 CrMo 4) steel. The results showed there was no significant difference between the friction coefficient of the high-speed steel tool and the tool coated with TiN but the friction coefficient of uncoated tool was slightly lower than that of the steel. In the second part of the study, coats of TiN , TiC , CrN , and TiAlN were deposited on high-speed steel and the wear characteristics were determined with a pin-on-disk wear examination. The differences in the friction coefficients were attributed to the difference in the wear of the slipping material. There were large differences in the adhesion characteristics on the surface of the slipping material. The author suggest that these differences influence the characteristics of the cutting tool.


Sign in / Sign up

Export Citation Format

Share Document