Study on Extract and Repair Traffic Performance Index Data of Beijing

2014 ◽  
Vol 1073-1076 ◽  
pp. 2443-2446
Author(s):  
Fan Zhang

Urban traffic expert developed many methods to judge the performance of urban road to provide driving instruction to both drivers and the local authority. In Beijing, the traffic performance index is widely used by people every day. In order to store the traffic performance index data which is continually changed to local database, our team has tried many different ways to achieve it because we want to do deep analyze of it. By using VBA programming we successfully build a data extract system to store data. We use two different ways to process the data from the system based on data missing type. At last, the data is ready for further study to find the traffic pattern of urban area.

CICTP 2017 ◽  
2018 ◽  
Author(s):  
Qing He ◽  
Yong-Shen Chen ◽  
Jun Qiao ◽  
Jian-Dong Qiu ◽  
Yang Li

2021 ◽  
Vol 10 (3) ◽  
pp. 177
Author(s):  
Haochen Zou ◽  
Keyan Cao ◽  
Chong Jiang

Urban road traffic spatio-temporal characters reflect how citizens move and how goods are transported, which is crucial for trip planning, traffic management, and urban design. Video surveillance camera plays an important role in intelligent transport systems (ITS) for recognizing license plate numbers. This paper proposes a spatio-temporal visualization method to discover urban road vehicle density, city-wide regional vehicle density, and hot routes using license plate number data recorded by video surveillance cameras. To improve the accuracy of the visualization effect, during data analysis and processing, this paper utilized Internet crawler technology and adopted an outlier detection algorithm based on the Dixon detection method. In the design of the visualization map, this paper established an urban road vehicle traffic index to intuitively and quantitatively reveal the traffic operation situation of the area. To verify the feasibility of the method, an experiment in Guiyang on data from road video surveillance camera system was conducted. Multiple urban traffic spatial and temporal characters are recognized concisely and efficiently from three visualization maps. The results show the satisfactory performance of the proposed framework in terms of visual analysis, which will facilitate traffic management and operation.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.


Transport ◽  
2018 ◽  
Vol 33 (4) ◽  
pp. 959-970 ◽  
Author(s):  
Tamás Tettamanti ◽  
Alfréd Csikós ◽  
Krisztián Balázs Kis ◽  
Zsolt János Viharos ◽  
István Varga

A full methodology of short-term traffic prediction is proposed for urban road traffic network via Artificial Neural Network (ANN). The goal of the forecasting is to provide speed estimation forward by 5, 15 and 30 min. Unlike similar research results in this field, the investigated method aims to predict traffic speed for signalized urban road links and not for highway or arterial roads. The methodology contains an efficient feature selection algorithm in order to determine the appropriate input parameters required for neural network training. As another contribution of the paper, a built-in incomplete data handling is provided as input data (originating from traffic sensors or Floating Car Data (FCD)) might be absent or biased in practice. Therefore, input data handling can assure a robust operation of speed forecasting also in case of missing data. The proposed algorithm is trained, tested and analysed in a test network built-up in a microscopic traffic simulator by using daily course of real-world traffic.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yi Zhao ◽  
Satish V. Ukkusuri ◽  
Jian Lu

This study develops a multidimensional scaling- (MDS-) based data dimension reduction method. The method is applied to short-term traffic flow prediction in urban road networks. The data dimension reduction method can be divided into three steps. The first is data selection based on qualitative analysis, the second is data grouping using the MDS method, and the last is data dimension reduction based on a correlation coefficient. Backpropagation neural network (BPNN) and multiple linear regression (MLR) models are employed in four kinds of urban traffic environments to test whether the proposed method improves the prediction accuracy of traffic flow. The results show that prediction models using traffic data after dimension reduction outperform the same prediction models using other datasets. The proposed method provides an alternative to existing models for urban traffic prediction.


2011 ◽  
Vol 97-98 ◽  
pp. 1162-1167
Author(s):  
Hong Wei Yuan ◽  
Wen Bo Zhang

In order to reduce traffic accidents, achieving safety and harmony of traffic color, a quantitative research on traffic color of urban road were carried. Grounded on modern knowledge of color theory, color psychology, Grey Theory and Back-error Propagation Artificial Neural Network (GT-BPNN), Particle Swarm Optimization algorithm (PSO) and traffic questionnaires, the evaluation index system of traffic color in urban road, the evaluation model of transportation color and the model of color harmony and optimization in urban road were constructed. Assisted by MATLAB and other software, the reliability and validity of models were determined, taking a road in Xuzhou, Jiangsu as a test section. According to the results, some reasonable improvements on traffic safe color were recommended.


2018 ◽  
Vol 10 (12) ◽  
pp. 4562 ◽  
Author(s):  
Xiangyang Cao ◽  
Bingzhong Zhou ◽  
Qiang Tang ◽  
Jiaqi Li ◽  
Donghui Shi

The paper studies urban road traffic problems from the perspective of resource science. The resource composition of urban road traffic system is analysed, and the road network is proved as a scarce resource in the system resource combination. According to the role of scarce resources, the decisive role of road capacity in urban traffic is inferred. Then the new academic viewpoint of “wasteful transport” was proposed. Through in-depth research, the paper defines the definition of wasteful transport and expounds its connotation. Through the flow-density relationship analysis of urban road traffic survey data, it is found that there is a clear boundary between normal and wasteful transport in urban traffic flow. On the basis of constructing the flow-density relationship model of road traffic, combined with investigation and analysis, the quantitative estimation method of wasteful transport is established. An empirical study on the traffic conditions of the Guoding section of Shanghai shows that there is wasteful transport and confirms the correctness of the wasteful transport theory and method. The research of urban wasteful transport also reveals that: (1) urban road traffic is not always effective; (2) traffic flow exceeding road capacity is wasteful transport, and traffic demand beyond the capacity of road capacity is an unreasonable demand for customers; (3) the explanation that the traffic congestion should apply the comprehensive theory of traffic engineering and resource economics; and (4) the wasteful transport theory and method may be one of the methods that can be applied to alleviate traffic congestion.


Sign in / Sign up

Export Citation Format

Share Document