Total Absorption Based on Smooth Double-Turn Helices

2015 ◽  
Vol 1117 ◽  
pp. 39-43
Author(s):  
I.A. Faniayeu ◽  
I.V. Semchenko ◽  
S.A. Khakhomov ◽  
Tatsiana Dziarzhauskaya

The electrically thin absorber of electromagnetic waves is under study. We proposed a new concept of the perfect absorber which consists from a single layer of the smooth double-turn helices. This allows one to design an absorber with unprecedentedly small thickness. Simple and smooth shape of the helices makes them more preferable from experimental point of view in comparison to other chiral particles. The absorber implies absence of a ground plane. High efficiency of the realized structure in the S band is demonstrated.

1988 ◽  
Vol 156 (9) ◽  
pp. 117-135 ◽  
Author(s):  
L.P. Gor'kov ◽  
N.B. Kopnin

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Andraž Bradeško ◽  
Lovro Fulanović ◽  
Marko Vrabelj ◽  
Aleksander Matavž ◽  
Mojca Otoničar ◽  
...  

Despite the challenges of practical implementation, electrocaloric (EC) cooling remains a promising technology because of its good scalability and high efficiency. Here, we investigate the feasibility of an EC cooling device that couples the EC and electromechanical (EM) responses of a highly functionally, efficient, lead magnesium niobate ceramic material. We fabricated multifunctional cantilevers from this material and characterized their electrical, EM and EC properties. Two active cantilevers were stacked in a cascade structure, forming a proof-of-concept device, which was then analyzed in detail. The cooling effect was lower than the EC effect of the material itself, mainly due to the poor solid-to-solid heat transfer. However, we show that the use of ethylene glycol in the thermal contact area can significantly reduce the contact resistance, thereby improving the heat transfer. Although this solution is most likely impractical from the design point of view, the results clearly show that in this and similar cooling devices, a non-destructive, surface-modification method, with the same effectiveness as that of ethylene glycol, will have to be developed to reduce the thermal contact resistance. We hope this study will motivate the further development of multifunctional cooling devices.


1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


2010 ◽  
Vol 44 (21) ◽  
pp. 2487-2507 ◽  
Author(s):  
G. Vargas ◽  
F. Mujika

The aim of this work is to compare from an experimental point of view the determination of in-plane shear strength of unidirectional composite materials by means of two off-axis tests: three-point flexure and tensile. In the case of the off-axis three-point flexure test, the condition of small displacements and the condition of lift-off between the specimen and the fixture supports have been taken into account. Some considerations regarding stress and displacement fields are presented. The in-plane shear characterization has been performed on a carbon fiber reinforced unidirectional laminate with several fiber orientation angles: 10°, 20°, 30°, and 45°. Test conditions for both off-axis experimental methods, in order to ensure their applicability, are presented. Off-axis flexure test is considered more suitable than off-axis tensile test for the determination of in-plane shear strength.


2017 ◽  
Vol 26 (5) ◽  
pp. 057701 ◽  
Author(s):  
Hai-Sheng Hou ◽  
Guang-Ming Wang ◽  
Hai-Peng Li ◽  
Wen-Long Guo ◽  
Tang-jing Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document