Characterization of Tilt Boundaries by Ultra High Resolution Electron Microscopy

1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.

Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
V. Castano ◽  
W. Krakow

In non-UHV microscope environments atomic surface structure has been observed for flat-on for various orientations of Au thin films and edge-on for columns of atoms in small particles. The problem of oxidation of surfaces has only recently been reported from the point of view of high resolution microscopy revealing surface reconstructions for the Ag2O system. A natural extension of these initial oxidation studies is to explore other materials areas which are technologically more significant such as that of Cu2O, which will now be described.


Author(s):  
J.M. Howe ◽  
R. Gronsky

The technique of high-resolution electron microscopy (HREM) is invaluable to the materials scientist because it allows examination of microstructural features at levels of resolution that are unobtainable by most other methods. Although the structural information which can be determined by HREM and accompanying image simulations has been well documented in the literature, there have only been a few cases where this technique has been used to reveal the chemistry of individual columns or planes of atoms, as occur in segregated and ordered materials.


Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


2000 ◽  
Vol 15 (7) ◽  
pp. 1551-1555 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Yuichi Ikuhara ◽  
Taketo Sakuma

The thickness distribution of grain-boundary films during the superplastic deformation of fine-grained β–silicon nitride was investigated by high-resolution electron microscopy. In particular, grain-boundary thickness was considered with respect to the stress axis in two orientations; namely, parallel and perpendicular to the direction of applied stress. The results showed that the thickness distribution in boundaries perpendicular to the direction of applied stress was unimodal, whereas in parallel boundaries it was bimodal. Moreover, it was found that the majority of film-free boundaries were parallel to the direction of applied stress in the extremely deformed sample. The variation in spacing reflects distribution of stresses within the material due to irregular shape of the grains and the existence of percolating load-bearing paths through the microstructure.


1992 ◽  
Vol 287 ◽  
Author(s):  
H.-J. Kleebe ◽  
M. K. Cinibulk ◽  
I. Tanaka ◽  
J. Bruley ◽  
R. M. Cannon ◽  
...  

ABSTRACTCharacterization of silicon nitride ceramics by transmission electron microscopy (TEM) provides structural and compositional information on intergranular phases necessary to elucidate the factors that can influence the presence and thickness of grain-boundary films. Different TEM techniques can be used for the detection and determination of intergranular-film thickness, however, the most accurate results are obtained by high-resolution electron microscopy (HREM). HREM studies were applied, in conjunction with analytical electron microscopy, to investigate the correlation between intergranular-phase composition and film thickness. Statistical analyses of a number of grain-boundary films provided experimental verification of a theoretical equilibrium film thickness. Model experiments on a high-purity Si3N4 material, doped with low amounts of Ca, suggest the presence of two repulsive forces, a steric force and a force produced by an electrical double layer, that may act to balance the attractive van der Waals force necessary to establish an equilibrium film thickness.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1139-1140
Author(s):  
D. Van Dyck

The ultimate goal of high resolution electron microscopy is to determine quantitatively the atomic structure of an object. In this respect the electron microscope can be considered as an information channel that carries this information from the object to the observer. High resolution images are then to be considered as data planes from which the structural information has to be extracted.However this structural information is usually hidden in the images and cannot easily be assessed. Therefore, a quantitative approach is required in which all steps in the imaging process are taken into account. Two main approaches have been followed so far in the literature: the indirect approach in which the images are simulated for various plausible trial structures of the object and compared with the experimental images, and the direct approach in which the lost phase information is retrieved using holographic techniques so as to “deblur” the effect of the microscope and to reveal directly the atomic structure of the object.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

General tilt grain boundaries can be viewed in terms of small structural units of varying complexity. High-resolution electron microscope (HREM) images of these boundaries in many materials show this repetitive similarity of the atomic structure at the boundary plane. The structure of particular grain boundaries has been examined for several special cases and commonly observed configurations include symmetric tilt grain boundaries and asymmetric tilt grain boundaries with one grain having a prominent, low-index facet. Several different configurations of the boundary structure may possibly occur, even in the same grain boundary. There are thus many possible ways to assemble the basic structural units to form a grain boundary. These structural units and their distribution have traditionally been examined by high-resolution electron microscopy. The images of the projection of the atomic columns (or the tunnels between atomic columns) providing a template for constructing “ball-and-stick ” models of the interface.


Author(s):  
T. Kizuka ◽  
N. Tanaka

Mechanical properties of polycrystalline materials become anomalous when the grain size and grain boundary length decrease to nanometer scale. For example, ductility and toughness increase significantly in nanometer-grained ceramics (nanocrystalline ceramics). Ductility increases due to appearance of fine-grained-superplastic deformation. Grain boundary migration and interface migration are fundamental processes of the superplastic deformation. Structural transformation of fine grains is a factor which limits the toughness in polycrystalline ceramics because the transformation relaxes internal strain. The behavior of grain boundaries and interfaces, such as diffusion bonding and Czochralski-type crystal growth at ambient temperature, can be analyzed by a time-resolved high-resolution electron microscopy (TRHREM) developed by Kizuka et al.,In the present study, grain boundary migration and successive transformation of crystal structure in nanocrystalline ZnO were investigated by TRHREM.Zinc oxide was vacuum-deposited on air-cleaved (001) surfaces of sodium chloride at 200°C. TRHREM was carried out at room temperature using a 200-kV electron microscope (JEOL, JEM2010) equipped with a high sensitive TV camera and a video tape recorder.


Sign in / Sign up

Export Citation Format

Share Document