Excimer Laser Crystallization of Nanocrystalline Silicon Thin Films

2015 ◽  
Vol 1120-1121 ◽  
pp. 361-368
Author(s):  
Li Jie Deng ◽  
Wei He ◽  
Zheng Ping Li

Nanocrystalline silicon (nc-Si) thin film on glass substrate is subjected to excimer laser crystallized by varying the laser energy density in the range of 50~600 mJ/cm2. The effect of excimer laser crystallization on the structure of silicon film is investigated using Raman spectroscopy, X-ray diffraction, atomic force microscopy and scanning electron microscopy. The results show that polycrystalline silicon thin films can be obtained by excimer laser crystallization of nc-Si films. A laser threshold energy density of 200 mJ/cm2 is estimated from the change of crystalline fraction and surface roughness of the treated films. The growth of grain is observed and the crystallization mechanism is discussed based on the super lateral growth model. The nanocrystalline silicon grains in the films act as seeds for lateral growth to large grains.

1996 ◽  
Vol 452 ◽  
Author(s):  
J. P. Leonard ◽  
M. A. Bessette ◽  
V. V. Gupta ◽  
James S. Im

AbstractRecognizing that the processing window in conventional excimer laser crystallization corresponds mainly to the partial melting regime, and that this can be properly simulated using a one-dimensional model, we investigate numerically the melting and solidification of thin silicon films on SiO2. Here a portion of the silicon film is melted and subsequent vertical solidification is initiated from the lower interface bounding the unmelted region. Upper and lower energy density limits for this regime are calculated for crystal silicon films of thickness 10 to 300 nm, and for pulse duration ranging from 10 to 200 ns. These calculations show that increasing pulse duration requires proportionally more incident energy density to partially melt the film, while decreasing film thickness reduces the range of energy densities over which partial melting can occur. The results are explained in terms of characteristic thermal diffusion distances and the enthalpy change associated with melting. In view of the results we discuss optimization of the conventional excimer laser crystallization and the avoidance of complete melting during the process.


1995 ◽  
Vol 34 (Part 1, No. 4A) ◽  
pp. 1759-1764 ◽  
Author(s):  
Ryoichi Ishihara ◽  
Wen-Chang Yeh ◽  
Takeo Hattori ◽  
Masakiyo Matsumura

Sign in / Sign up

Export Citation Format

Share Document