Biotechnological Recovery of Valuable Metals from Lignite Ash

2015 ◽  
Vol 1130 ◽  
pp. 664-667
Author(s):  
Sabrina Hedrich ◽  
Sören Bellenberg ◽  
René Kermer ◽  
Tilman Gehrke ◽  
Wolfgang Sand ◽  
...  

Ashes from lignite combustion for power generation contain considerable amounts of strategic metals, metalloids and rare earth elements. Within the presented project bioleaching with different types of microorganisms was investigated to recover valuable metals from lignite ashes. An increased mobilization of several metals ions was observed with the gluconic acid-producing bacteriumAcetobacter methanolicusand the silicate-solubilizing bacteriumBacillus circulans. Most promising results were achieved with sulfuric acid-producing microorganisms and bioleaching could even be increased at higher temperatures or by reductive bioleaching using acidophilic, iron-reducing bacteria.

2020 ◽  
Vol 7 (3) ◽  
pp. 196-206
Author(s):  
Shunda Lin ◽  
Mamdouh Omran ◽  
Shenghui Guo

: Microwave heating technology is considered one of the most likely to replace traditional heating methods due to its efficient, quick, and green heating transmission that meets the requirements of sustainable development. Microwave heating can strengthen chemical reactions and change the morphology of minerals, and it can save energy and achieve rapid and efficient heating, clean production, and emission reduction. Therefore, this paper summarizes the research status of microwave heating in the recovery of valuable metals (Cu, Au, V),) from metallurgical waste ore and rare earth elements from rare earth minerals in recent years, expounds the principle of microwave heating, and summarizes the previous experimental phenomena. Finally, the development potential, opportunities, and difficulties of microwave technology in future industrial applications are discussed.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Xiaosheng Yang ◽  
Hannu Tapani Makkonen ◽  
Lassi Pakkanen

Rare earth elements (REEs) are defined as lanthanides with Y and Sc. Rare earth occurrences including the REE-bearing phases and their distributions, measured by rare earth oxides (REOs), in the streams of processing a phosphate ore were determined by using MLA, the mineral liberation analysis and EPMA, the electron probe microanalysis. The process includes an apatite ore beneficiation by flotation and further processing of the beneficiation concentrate with sulfuric acid. Twenty-six, sixty-two and twelve percent of the total REOs (TREO) contents from the ore end up in the products of beneficiation tailings, phosphogypsum (PG) and phosphoric acid, respectively. Apatite, allanite, monazite and pyrochlore are identified as REE-bearing minerals in the beneficiation process. In the beneficiation tailings, the REEs are mainly distributed in monazite (10.3% TREO), apatite (5.9% TREO), allanite (5.4% TREO) and pyrochlore (4.3% TREO). Gypsum, monazite, apatite and other REE-bearing phases were found to host REEs in the PG and the REEs distributions are 44.9% TREO in gypsum, 15.8% TREO in monazite, 0.6% TREO in apatite and 0.6% TREO in other REE-bearing phases. Perspectives on the efficient recovery of REEs from the beneficiation tailings and the PG are discussed.


2017 ◽  
Vol 262 ◽  
pp. 299-302
Author(s):  
Ivan Nancucheo ◽  
D. Barrie Johnson ◽  
Manoel Lopes ◽  
Guilherme Oliveira

Lateritic deposits containing rare earth elements (REE) are important resources in Brazil, where monazite is the main REE-bearing mineral and is frequently associated with iron hydroxy-oxides and quartz. In order to recover valuable metals such as REE and uranium, experiments were carried out under reductive mineral dissolution using Acidithiobacillus species. In terms of phosphate, aerobic reductive dissolution at pH 0.9 using A. thiooxidans extracted about 35% of that present in the ore which is and indicator of the dissolution of monazite. Although only ~9% of the cerium and 5% of the lanthanum were extracted, ~72% of the uranium was solubilized, indicating that it was more susceptible to extraction by reductive dissolution than the other two REE.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Kim Dung NHU ◽  
Van Luan PHAM ◽  
Thi Chinh VU ◽  
Van Duoc TRAN

Rare earth metals are used in electricity, electronics, nuclear, optics, space, metallurgy,superconducting and super magnetic materials, glass and ceramics, and agriculture. Some rare earthelements are added to fertilizers for crops and some trials for animal feed. Rare earth elements, exceptfor radioactive promethium, are relatively abundant in the earth's crust. Vietnam has a tremendous rareearth potential, distributed mainly in the Northwest, including Nam Xe, Dong Pao, Muong Hum, andYen Bai. There are many research projects on rare earth ores of different types globally, but the focus ismainly on the essential minerals, including monazite, xenotime, and bastnaesite. This report summarizesresearch data on rare earth ore intending to produce a general assessment of rare earth ore and itsbeneficiation technology in Vietnam.


2015 ◽  
Vol 53 (1) ◽  
pp. 46-52
Author(s):  
Chul-Joo Kim ◽  
Ho-Sung Yoon ◽  
Kyung Woo Chung ◽  
Jin-Young Lee ◽  
Sung-Don Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document