scholarly journals Recovery of Metals and Rare Earth Elements by Microwave heating Technology - A Review

2020 ◽  
Vol 7 (3) ◽  
pp. 196-206
Author(s):  
Shunda Lin ◽  
Mamdouh Omran ◽  
Shenghui Guo

: Microwave heating technology is considered one of the most likely to replace traditional heating methods due to its efficient, quick, and green heating transmission that meets the requirements of sustainable development. Microwave heating can strengthen chemical reactions and change the morphology of minerals, and it can save energy and achieve rapid and efficient heating, clean production, and emission reduction. Therefore, this paper summarizes the research status of microwave heating in the recovery of valuable metals (Cu, Au, V),) from metallurgical waste ore and rare earth elements from rare earth minerals in recent years, expounds the principle of microwave heating, and summarizes the previous experimental phenomena. Finally, the development potential, opportunities, and difficulties of microwave technology in future industrial applications are discussed.

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Wenjie Zhang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Yunpeng Du ◽  
Qiang Song ◽  
...  

Solvent extraction is the most widely used method for separation and purification of rare earth elements, and organic extractants such as di(2-ethylhexyl) phosphoric acid (P204) and di(1-methyl-heptyl) methyl phosphonate (P350) are most commonly used for industrial applications. However, the presence of impurity ions in the feed liquid during extraction can easily emulsify the extractant and affect the quality of rare earth products. Aluminum ion is the most common impurity ion in the feed liquid, and it is an important cause of emulsification of the extractant. In this study, the influence of aluminum ion was investigated on the extraction of light rare earth elements by the P204-P350 system in hydrochloric acid medium. The results show that Al3+ competes with light rare earths in the extraction process, reducing the overall extraction rate. In addition, the Al3+ stripping rate is low and there is continuous accumulation of Al3+ in the organic phase during the stripping process, affecting the extraction efficiency and even causing emulsification. The slope method and infrared detection were utilized to explore the formation of an extraction compound of Al3+ and the extractant P204-P350 that entered the organic phase as AlCl[(HA)2]2P350(o).


2017 ◽  
Vol 262 ◽  
pp. 299-302
Author(s):  
Ivan Nancucheo ◽  
D. Barrie Johnson ◽  
Manoel Lopes ◽  
Guilherme Oliveira

Lateritic deposits containing rare earth elements (REE) are important resources in Brazil, where monazite is the main REE-bearing mineral and is frequently associated with iron hydroxy-oxides and quartz. In order to recover valuable metals such as REE and uranium, experiments were carried out under reductive mineral dissolution using Acidithiobacillus species. In terms of phosphate, aerobic reductive dissolution at pH 0.9 using A. thiooxidans extracted about 35% of that present in the ore which is and indicator of the dissolution of monazite. Although only ~9% of the cerium and 5% of the lanthanum were extracted, ~72% of the uranium was solubilized, indicating that it was more susceptible to extraction by reductive dissolution than the other two REE.


2012 ◽  
Vol 454 ◽  
pp. 268-272 ◽  
Author(s):  
Peng Gao ◽  
Yue Xin Han ◽  
Yong Sheng Sun ◽  
Chao Chen

Occurrence state of rare earth elements in the different deoxidization stages and the behavior of rare earth elements in the process of depth reduction were studied by analyzing XRD and SEM images of Bayan Obo oxide ore in different deoxidization time. The results showed that deoxidization time had a great effect on the occurrence state of rare earth elements. With the increase of deoxidization time, rare earth minerals gradually translated from bastnaesite and urdite into (CaO•2Ce2O3•3SiO2).This phase was white with a small size. It was columnar or massive in most cases and could be easily separated from the iron phase. 97.18% of the rare earth elements, which could be recovered by flotation, gravity separation and magnetic separation, entered the iron tailings.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Ochoa ◽  
E. Monteblanco ◽  
L. Cerpa ◽  
A. Gutarra-Espinoza ◽  
L. Avilés-Félix

AbstractA recently discovered the rare-earth-rich site in Capacsaya, located at 123 km northwest of Cusco, at the south of Peru, contains significant quantities of light and heavy rare-earth elements such as neodymium, lanthanum, cerium, europium, and yttrium. This work reports the identification of rare-earth elements and their associated minerals using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Five (5) samples extracted from different locations at the Capacsaya site were characterized and identified K-feldspar as the mineral associated with the rare-earth elements in a representative sample with a high concentration of lanthanum and cerium. The results showed rare-earth elements contained within the mineral phase monazite, being cerium the dominant element in the phase (La, Ce, Nd)PO$$_4$$ 4 . Finally, through the electrostatic separation process we demonstrate that it was possible to achieve an efficient separation of the K-feldspar phase in the particle size range 75–150 $$\upmu$$ μ m.


Georesursy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 56-66
Author(s):  
Sergey G. Kovalev ◽  
Andrey V. Maslov ◽  
Sergey S. Kovalev

The article provides new data on geochemistry and mineralogy of rare-earth elements (REE) in rocks of structural-material complexes of the Bashkir megaanticlinorium, which underwent metamorphic transformations of various nature: contact metamorphism (Suran section); syn- and postgenetic contact-dislocation metamorphism (Shatak complex) and hydrothermal metamorphism (Uluelga-Kudashmanovo zone). It has been established that when a magmatic melt is exposed to sediments, the latter are enriched with REEs with the formation of rare earth minerals (monazite, allanite, xenotime et al.). The study of the chemical composition of monazites and allanites showed that all variations of oxides in the composition of the former are due to isomorphous Ce-Ca-Th substitutions in the structure of minerals, but redistribution of these elements was an independent process characteristic of each structural-material complex. The study of allanites made it possible to establish the presence of isomorphism according to the Ca↔Ce, La, Nd principle, as well as the sharp difference between the characterized minerals in the amount of MgO, Fe* and MnO from analogues from other regions, which indicates the presence of a regional component in the chemical compositions of minerals altogether, geotectonic settings of mineralization formation. The temperature regimes of mineral-forming processes with metamorphic transformations of rocks calculated from chlorite and muscovite compositions (344-450°C – Suran section, 402-470°C – Shatak complex, 390-490°C – Uluelga-Kudashmanovo zone) indicate the possibility of stable coexistence of the association monazite-allanite. It was established that when a magmatic melt on the sedimentary substrate of the frame, the lanthanides enrich the exocontact rocks with the formation of newly formed REE-mineral associations. At the same time, the processes of formation of rare-earth mineralization are largely determined by the physicochemical parameters and thermobaric conditions of the accompanying and subsequent metamorphism.


2020 ◽  
Vol 07 ◽  
Author(s):  
Jinjia Du ◽  
Yong Yang ◽  
Mamdouh Omran ◽  
Shenghui Guo

: Microwave heating technology, as a new green metallurgical method, is the core technology used in metallurgical engineering. Based on a brief overview of the principle of microwave technology heating and its application in the metallurgical industry, this paper summarizes the latest research progress and development status of the current microwave heating technology in the hydrometallurgy leaching process and the trend of the application of microwave heating technology in metallurgy. A detailed classification and discussion on the leaching process of common metals is made. The purpose is to further improve the application level of the technology and provide technical support for the improvement of the market position of China’s metallurgical industry. Finally, the problems that need to be solved urgently in the hydrometallurgy of microwave-assisted leaching are further discussed and prospects and suggestions are made.


Author(s):  
Franca Tommasi ◽  
Philippe J. Thomas ◽  
Giovanni Pagano ◽  
Genevieve A. Perono ◽  
Rahime Oral ◽  
...  

Abstract Rare earth elements (REEs) are key constituents of modern technology and play important roles in various chemical and industrial applications. They also are increasingly used in agricultural and zootechnical applications, such as fertilizers and feed additives. Early applications of REEs in agriculture have originated in China over the past several decades with the objective of increasing crop productivity and improving livestock yield (e.g., egg production or piglet growth). Outside China, REE agricultural or zootechnical uses are not currently practiced. A number of peer-reviewed manuscripts have evaluated the adverse and the positive effects of some light REEs (lanthanum and cerium salts) or REE mixtures both in plant growth and in livestock yield. This information was never systematically evaluated from the growing body of scientific literature. The present review was designed to evaluate the available evidence for adverse and/or positive effects of REE exposures in plant and animal biota and the cellular/molecular evidence for the REE-associated effects. The overall information points to shifts from toxic to favorable effects in plant systems at lower REE concentrations (possibly suggesting hormesis). The available evidence for REE use as feed additives may suggest positive outcomes at certain doses but requires further investigations before extending this use for zootechnical purposes.


Sign in / Sign up

Export Citation Format

Share Document