Performance Study of a Wood Solar Drying Device with Latent Heat Storage System

2010 ◽  
Vol 160-162 ◽  
pp. 1032-1037
Author(s):  
Xiao Jiang Feng ◽  
Zheng Bin He ◽  
Song Lin Yi

Wood drying is one of the most important process links in wood products processing and it consumes roughly 40%~70% of the total energy in the entire process. The performance of a mobile wood solar drying device with latent heat storage system was tested in this paper. The test results showed that the average power of collector system was 0.572kW and thermal efficiency was 56%, which was higher than that of the flat-plate collector. Energy storage efficiency came to 66% and energy storage density was 54.5 MJ/m3. Compared with the steam drying, energy-saving effect of solar drying increased significantly. The energy saving rate was 71.2%. Additionally, the drying device could accurately control the temperature, so it could better accomplish various drying process.

Author(s):  
Ju-Yeol Ryu ◽  
Adrian Alford ◽  
Graham Lewis ◽  
Yulong Ding ◽  
Yunren Li ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2685
Author(s):  
Mohammad Ghalambaz ◽  
Jasim M. Mahdi ◽  
Amirhossein Shafaghat ◽  
Amir Hossein Eisapour ◽  
Obai Younis ◽  
...  

This study aims to assess the effect of adding twisted fins in a triple-tube heat exchanger used for latent heat storage compared with using straight fins and no fins. In the proposed heat exchanger, phase change material (PCM) is placed between the middle annulus while hot water is passed in the inner tube and outer annulus in a counter-current direction, as a superior method to melt the PCM and store the thermal energy. The behavior of the system was assessed regarding the liquid fraction and temperature distributions as well as charging time and energy storage rate. The results indicate the advantages of adding twisted fins compared with those of using straight fins. The effect of several twisted fins was also studied to discover its effectiveness on the melting rate. The results demonstrate that deployment of four twisted fins reduced the melting time by 18% compared with using the same number of straight fins, and 25% compared with the no-fins case considering a similar PCM mass. Moreover, the melting time for the case of using four straight fins was 8.3% lower than that compared with the no-fins case. By raising the fins’ number from two to four and six, the heat storage rate rose 14.2% and 25.4%, respectively. This study presents the effects of novel configurations of fins in PCM-based thermal energy storage to deliver innovative products toward commercialization, which can be manufactured with additive manufacturing.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2264 ◽  
Author(s):  
Sebastian Ammann ◽  
Andreas Ammann ◽  
Rebecca Ravotti ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

The problem of emulsification between Phase Change Material (PCM) and Heat Transfer Fluid (HTF) in direct contact latent heat storage systems has been reported in various studies. This issue causes the PCM to flow out of the storage tank and crystallize at unwanted locations and thus presents a major limitation for the proper operation of such systems. These anomalies become more pronounced when high HTF flow rates are employed with the aim to achieve fast heat transfer rates. The goal of this paper is to find a method which will enable the fast separation of the formed emulsion and thus the uninterrupted operation of the storage unit. In this study, three separation methods were examined and the use of superhydrophobic filters was chosen as the best candidate for the demulsification of the PCM and HTF mixtures. The filter was produced by processing of a melamine sponge with different superhydrophobic adhesives and was tested with emulsions closely resembling the ones formed in a real direct contact setup. The superhydrophobic filter obtained, was able to separate the emulsions effectively while presenting a very high permeability (up to 1,194,980 kg h−1 m−2 bar−1). This is the first time the use of a superhydrophobic sponge has been investigated in the context of demulsification in direct contact latent heat storage.


Sign in / Sign up

Export Citation Format

Share Document