A Method of Determining Strengthening Design Ground-Motion Parameters for the Existing Building

2010 ◽  
Vol 163-167 ◽  
pp. 3443-3447
Author(s):  
Yu Hong Ma ◽  
Gui Feng Zhao ◽  
Jie Cui ◽  
Ping Tan

At present, seismic strengthening design reference period of the existing building is usually equal to 50 years in China, sometime this is uneconomic and unreasonable. In this paper, determining principle of seismic strengthening design reference period for the existing building with different importance is presented. The seismic strengthening design level of the existing building is put forward. After the shape factor of intensity probability distribution function is used to represent the seismic hazard characteristic of different areas, the seismic hazard curve formula of design acceleration Amax and earthquake influence coefficient αmax are deduced according to the seismic hazard curve of intensity. The seismic strengthening design ground motion parameter for the existing building with different importance is researched in detail by use of hazard curve formula of seismic ground motion parameter based on seismic hazard characteristic zone. At last, the method and the calculation step are explained by a calculation example. The result shows that for the existing building with different design reference period, using same design parameter is unreasonable in different seismic hazard characteristic zone, and the method is more scientific than the code method.

1999 ◽  
Vol 42 (6) ◽  
Author(s):  
K. M. Shedlock

Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of North and Central America and the Caribbean is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful regional seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of North and Central America and the Caribbean depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The highest seismic hazard values in the region generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
K. M. Shedlock ◽  
J. G. Tanner

Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of the Americas depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The largest seismic hazard values in the western hemisphere generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. Although the largest earthquakes ever recorded are the 1960 Chile and 1964 Alaska subduction zone earthquakes, the largest seismic hazard (PGA) value in the Americas is in Southern California (U.S.), along the San Andreas fault.


Author(s):  
Fatemeh Jalayer ◽  
Hossein Ebrahimian ◽  
Andrea Miano

AbstractThe Italian code requires spectrum compatibility with mean spectrum for a suite of accelerograms selected for time-history analysis. Although these requirements define minimum acceptability criteria, it is likely that code-based non-linear dynamic analysis is going to be done based on limited number of records. Performance-based safety-checking provides formal basis for addressing the record-to-record variability and the epistemic uncertainties due to limited number of records and in the estimation of the seismic hazard curve. “Cloud Analysis” is a non-linear time-history analysis procedure that employs the structural response to un-scaled ground motion records and can be directly implemented in performance-based safety-checking. This paper interprets the code-based provisions in a performance-based key and applies further restrictions to spectrum-compatible record selection aiming to implement Cloud Analysis. It is shown that, by multiplying a closed-form coefficient, code-based safety ratio could be transformed into simplified performance-based safety ratio. It is shown that, as a proof of concept, if the partial safety factors in the code are set to unity, this coefficient is going to be on average slightly larger than unity. The paper provides the basis for propagating the epistemic uncertainties due to limited sample size and in the seismic hazard curve to the performance-based safety ratio both in a rigorous and simplified manner. If epistemic uncertainties are considered, the average code-based safety checking could end up being unconservative with respect to performance-based procedures when the number of records is small. However, it is shown that performance-based safety checking is possible with no extra structural analyses.


2020 ◽  
Author(s):  
Giorgio Andrea Alleanza ◽  
Filomena de Silva ◽  
Anna d'Onofrio ◽  
Francesco Gargiulo ◽  
Francesco Silvestri

<p>Semi-empirical procedures for evaluating liquefaction potential (e.g. Seed & Idriss, 1971) require the estimation of cyclic resistance ratio (CRR) and cyclic shear stress ratio (CSR). The first can be obtained using empirical relationships based on in situ tests (e.g. CPT, SPT), the latter can be expressed as function of the maximum horizontal acceleration at ground surface (a<sub>max</sub>), total and effective vertical stresses at the depth of interest (σ<sub>v0</sub>, σ’<sub>v0</sub>) and a magnitude-dependent stress reduction coefficient (r<sub>d</sub>) that accounts for the deformability of the soil column (Idriss & Boulanger, 2004). All these methods were developed referring to a moment magnitude (M<sub>w</sub>) equal to 7.5 and therefore require a magnitude scale factor (MSF) to make them suitable for different magnitude values. Usually, MSF and r<sub>d</sub> are computed with reference to the mean or modal value of M<sub>w</sub> taken from a disaggregation analysis, while a<sub>max</sub> is obtained from a seismic hazard curve, including the contribution of various combinations of magnitudes and distances (Kramer & Mayfield, 2005). Thus, there might be inconsistency between the magnitude values used to evaluate either MSF or r<sub>d</sub> and a<sub>max</sub>. To overcome this problem, Idriss (1985) suggests to directly introduce the MSF in the probabilistic hazard analysis of the seismic acceleration. In this contribution, an alternative method is proposed, by properly modifying the acceleration seismic hazard curve conventionally adopted by the code of practice on the basis the disaggregation analysis, so that i) the contribution of the different magnitudes and the associated MSF and r<sub>d</sub>-values are considered, ii) the computational effort is reduced since a CSR-hazard curve is straightforward obtained. This alternative method is used to carry out a simplified liquefaction assessment of a sand deposit located in the municipality of Casamicciola Terme (Naples, Italy), where the results of SPT tests are available from recent seismic microzonation studies. The CSR computed using the proposed procedure is lower than that obtained adopting the classical method suggested by Idriss & Boulanger (2004). This can be explained considering that the suggested method takes into account all the magnitudes that contribute to the definition of the seismic hazard, instead of considering the mean or modal value of the disaggregation analysis. Such an accurate prediction of the seismic demand may represent a basis for more reliable seismic microzonation maps for liquefaction and for a less conservative design of liquefaction risk mitigation measures.</p><p>References</p><p>Idriss, I.M. (1985). Evaluation of seismic risk in engineering practice, Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg, 1, 255-320.</p><p>Idriss, I.M., Boulanger, R. W. (2004). Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes, Proceedings of the 11th ICSDEE & 3rd ICEGE, (Doolin et al. Eds.), Berkeley, CA, USA, 1, 32-56.</p><p>Kramer, S.L., Mayfield, R.T. (2005) Performance-based Liquefaction Hazard Evaluation, Proceedings of the Geo-Frontiers Congress, January 24-26, Austin, Texas, USA.</p><p>Seed H.B., Idriss M. (1971). Simplified procedure for evaluating soil liquefaction potential, J. Soil Mech. Found. Div., 97, 1249-1273.</p>


Author(s):  
Ellen M. Rathje ◽  
Gokhan Saygili

The evaluation of earthquake-induced landslides in natural slopes is often based on an estimate of the permanent sliding displacement due to earthquake shaking. Current procedures for estimating sliding displacement do not rigorously account for the significant uncertainties present in the analysis. This paper presents a probabilistic framework for computing the annual rate of exceedance of different levels of displacement such that a hazard curve for sliding displacement can be developed. The analysis incorporates the uncertainties in the prediction of earthquake ground shaking, in the prediction of sliding displacement, and in the assessment of soil properties. Predictive models for sliding displacement that are appropriate for the probabilistic framework are presented. These models include a scalar model that predicts sliding displacement in terms of a single ground motion parameter (peak ground acceleration) and the earthquake magnitude, as well as a vector model that incorporates two ground motion parameters (peak ground acceleration and peak ground velocity). The addition of a second ground motion parameter results in a significant reduction in the standard deviation of the sliding displacement prediction. Comparisons are made between displacement hazard curves developed from the current scalar and vector models and previously developed scalar models that do not include earthquake magnitude. Additionally, an approximation to the vector hazard assessment is presented and compared with the rigorous vector approach. Finally, the inclusion of the soil property uncertainty is shown to increase the mean hazard at a site.


2020 ◽  
Author(s):  
Vasily Pavlenko

<p>The problem is considered of unrealistic ground motion estimates, which arise when the Cornell–McGuire method is used to estimate the seismic hazard for extremely low annual probabilities of exceedance. This problem stems from using the normal distribution in the modelling of the variability of the logarithm of ground motion parameters. In this study, the statistical properties of the logarithm of peak ground acceleration (PGA) are analysed by using the database of the strong-motion seismograph networks of Japan. The normal distribution and the generalised extreme value distribution (GEVD) models were considered in the analysis, with the preferred model being selected based on statistical criteria. The results indicate that the GEVD was a more appropriate model in eleven out of twelve instances. The estimates of the shape parameter of the GEVD were negative in every instance, indicating the presence of a finite upper bound of PGA. Therefore, the GEVD provides a model that is more realistic for the scatter of the logarithm of PGA, and the application of this model leads to a bounded seismic hazard curve.</p>


Sign in / Sign up

Export Citation Format

Share Document