Stability Analysis of Nantong Sports and Exhibition Center Based on Measured Geometrical Imperfections

2010 ◽  
Vol 163-167 ◽  
pp. 426-432
Author(s):  
Cai Qi Zhao ◽  
Jun Ma ◽  
De Lin Li

Position deviation of joints is a primary initial geometrical imperfection that affects the stability of long-span spatial structures. It makes field measurement of joint coordinate for the shell and roof initial shape of Nantong Sports Exhibition Center upon its completion. This paper researches the stochastic distribution feature and statistical parameter of geometrical imperfections for the data sources of above position deviation of joints by “abnormal data test method”. The results indicate that the distribution of abnormal data is concentrated, which is related to the difficulty of construction and condition of measurement; the distribution of joint position deviation can be assumed by normal distribution, and its mean μ=0 and mean square deviation σ=R/2 of statistical parameter are tenable. Meanwhile, It also puts forward a stochastic imperfection method based on measured imperfections and ANSYS-PDS platform, establishes a measured model to make nonlinear stability analysis, and respectively compares this critical load with that obtained by the perfect structure of ideal shape and the consistent imperfection method, so as to evaluate the stability and reliability of practical project in an objective manner, and provide reference for project design.

1977 ◽  
Vol 17 (01) ◽  
pp. 79-91 ◽  
Author(s):  
D.W. Peaceman

Abstract The usual linearized stability analysis of the finite-difference solution for two-phase flow in porous media is not delicate enough to distinguish porous media is not delicate enough to distinguish between the stability of equations using semi-implicit mobility and those using completely implicit mobility. A nonlinear stability analysis is developed and applied to finite-difference equations using an upstream mobility that is explicit, completely implicit, or semi-implicit. The nonlinear analysis yields a sufficient (though not necessary) condition for stability. The results for explicit and completely implicit mobilities agree with those obtained by the standard linearized analysis; in particular, use of completely implicit mobility particular, use of completely implicit mobility results in unconditional stability. For semi-implicit mobility, the analysis shows a mild restriction that generally will not be violated in practical reservoir simulations. Some numerical results that support the theoretical conclusions are presented. Introduction Early finite-difference, Multiphase reservoir simulators using explicit mobility were found to require exceedingly small time steps to solve certain types of problems, particularly coning and gas percolation. Both these problems are characterized percolation. Both these problems are characterized by regions of high flow velocity. Coats developed an ad hoc technique for dealing with gas percolation, but a more general and highly successful approach for dealing with high-velocity problems has been the use of implicit mobility. Blair and Weinaug developed a simulator using completely implicit mobility that greatly relaxed the time-step restriction. Their simulator involved iterative solution of nonlinear difference equations, which considerably increased the computational work per time step. Three more recent papers introduced the use of semi-implicit mobility, which proved to be greatly superior to the fully implicit method with respect to computational effort, ease of use, and maximum permissible time-step size. As a result, semi-implicit mobility has achieved wide use throughout the industry. However, this success has been pragmatic, with little or no theoretical work to justify its use. In this paper, we attempt to place the use of semi-implicit mobility on a sounder theoretical foundation by examining the stability of semi-implicit difference equations. The usual linearized stability analysis is not delicate enough to distinguish between the semi-implicit and completely implicit difference equation. A nonlinear stability analysis is developed that permits the detection of some differences between the stability of difference equations using implicit mobility and those using semi-implicit mobility. DIFFERENTIAL EQUATIONS The ideas to be developed may be adequately presented using the following simplified system: presented using the following simplified system: horizontal, one-dimensional, two-phase, incompressible flow in homogeneous porous media, with zero capillary pressure. A variable cross-section is included so that a variable flow velocity may be considered. The basic differential equations are (1) (2) The total volumetric flow rate is given by (3) Addition of Eqs. 1 and 2 yields =O SPEJ P. 79


2012 ◽  
Vol 226-228 ◽  
pp. 1185-1189
Author(s):  
Jian Kang ◽  
Xiang Yu Liu

Radiant cable suspendome based on single-layer lattice shell is proposed in this paper whose cable-strut system is like that of Radiant Beam String Structure, the purpose of this paper is to do stability analysis of the structure.The linear buckling analysis of the hybrid structure and the single-layer lattice shell who has the same geometry parameters is carried out, we can preliminarily understand the stability of the hybrid structure. At the same time, nonlinear buckling analysis is carried out to study the stability of the hybrid structure under different rise-span ratios, different prestress level and half-span load. The results show that the introduction of prestressed cables greatly improve the structure's stability and reduce the structure sensitivity to original geometrical imperfection.


2012 ◽  
Vol 446-449 ◽  
pp. 1199-1202
Author(s):  
Yan Jiang Chen ◽  
Xiao Qiang Ren ◽  
Jin Jie Wang ◽  
Da Peng Gu

Abstract. This paper lists the problems during the stability analysis of long span CFST arch bridge and the corresponding modeling method. Based on the construction control of an orthotropic long span CFST arch bridge, a FEM model had been established to analysis the stability of its rib during the concrete pumping. The conclusion shows significant importance to the bridge’s construction process.


2013 ◽  
Vol 361-363 ◽  
pp. 1251-1254
Author(s):  
Xiao Mei Dong

Shell element was used to simulate thin-walled piers. Mander constitutive model was adopted for analysis about the material nonlinearity. By finite displacement theory the geometric nonlinearity effect was reckoned in stability analysis based on Updated Lagrangian formulation. Nonlinear stability analysis during different construction stages indicates that the stability of pier in cantilever stage is weakest. Considered the dual non-linearity, the stability coefficient descends distinctly.


Spherical conducting liquid drops fission when their net electrical charge exceeds the Rayleigh limit Q c ≡ 4√π, where the shape becomes unstable to small amplitude perturbations which lead to two-lobed forms. We use a combination of domain perturbation and multiple timescale methods to compute the evolution of axisymmetric, inviscid oscillating drops near this limit and show that it corresponds to a transcritical bifurcation point between the families of static spherical shapes and oblate and prolate axisymmetric forms. Prolate forms exist at lower values of charge ( Q < Q c ) and are unstable to small-amplitude perturbations. Finite amplitude oscillations destabilize the spheres at a value of charge below Q c , with the decrease in the critical value proportional to the amplitude of the prolate component of the initial shape disturbance. Oblate static shapes exist for Q > Q c and are stable to small axisymmetric perturbations, but are unstable to moderate-amplitude ones, where the stability boundary is given by the nonlinear stability analysis. Finite element analysis is used to calculate the static drop shapes in both the prolate and oblate families. Asymptotic analysis for the static shapes is in good agreement with the numerical calculations for even moderate-amplitude deformations of the drop.


1986 ◽  
Vol 30 (02) ◽  
pp. 136-146 ◽  
Author(s):  
Michael M. Bernitsas ◽  
Nikos S. Kekridis

The course stability of a towed vessel is traditionally assessed using local linear analysis of a time-independent system of a ship towed by an inelastic towline. In this work a method is developed for studying the global stability of a nonlinear time-dependent model of the horizontal plane motions of a ship towed by a nonlinear elastic rope. First, the critical points of the corresponding autonomous system are found in the phase space and their nature is determined by local analysis. Then the global behavior of the trajectories in the phase space is predicted on the basis of the local analysis results. The results of the stability analysis are verified by comparison with the solution of the model by simulation. A barge, a tanker and a Mariner, with markedly different course stability characteristics, towed by two different elastic ropes are used to illustrate the method.


2018 ◽  
Vol 32 (26) ◽  
pp. 1850314 ◽  
Author(s):  
Di-Hua Sun ◽  
Peng Tan ◽  
Dong Chen ◽  
Fei Xie ◽  
Lin-Hui Guan

In this paper, we propose a new car-following model considering driver’s timid and aggressive characteristics on a gradient highway. Based on the control theory, the linear stability analysis of the model was conducted. It shows that the stability of traffic flow on the gradient highway varies with the drivers’ characteristics and the slope. Adopting nonlinear stability analysis, the Burgers equation and modified Korteweg–de Vries (mKdV) equation are derived to describe the triangular shock waves and kink–antikink waves, respectively. The theoretical and numerical results show that aggressive drivers tend to stabilize traffic flow but timid drivers tend to destabilize traffic flow on a gradient highway both on an uphill situation and on a downhill situation. Moreover, the slope of the road also plays an important role in traffic jamming transition.


2012 ◽  
Vol 178-181 ◽  
pp. 1989-1993
Author(s):  
Xiao Mei Dong

The linear and nonlinear stability of continuous rigid frame bridge with thin-wall piers is analyzed by using the current FEM software. Linear stability analysis indicates that coefficient of stability in cantilever stage is poorest. Two aspects are included in nonlinear stability analysis. The first one, only geometric nonlinearity is considered and the other one, geometric nonlinearity and material nonlinearity are considered simultaneously. The results show that material nonlinearity is a factor to stability coefficient that can not be overlooked. Considered the dual non-linearity, the stability coefficient descends consumedly.


2010 ◽  
Vol 163-167 ◽  
pp. 1916-1923
Author(s):  
Kai Rong Shi ◽  
Zheng Rong Jiang ◽  
Shi Tong Wang

Consistent Mode Imperfections Method based on eigenvalue buckling mode is widely adopted in the stability analysis for the spatial steel structures with initial geometrical imperfections, i.e. latticed shells, thin shells, etc. Taking the new type hybrid structure of suspendome as the analytical object, the applicability of Consistent Mode Imperfections Method is discussed. The effects on structural stability are probed arisen by the factors such as different initial reference loads and different order eigenvalue buckling modes. It is indicated that this stability analysis method can be quite fit for the spatial structures such as latticed shells, while for suspendomes, the initial reference load has a distinct effect upon the analytical result obtained by the stability analysis method. Moreover, it is not always to dominate calculating result when selecting the first order eigenvalue buckling mode as the distributing pattern of initial geometrical imperfections. As a result, some measures should be taken to improve the accuracy in evaluating the stability bearing capacity of the structures with Consistent Mode Imperfections Method based on eigenvalue buckling mode.


Sign in / Sign up

Export Citation Format

Share Document