Experimental Research on Fire Response and Post-Fire Bearing Capacity of Profiled Sheet-Ceramsite Concrete Composite Floor

2010 ◽  
Vol 168-170 ◽  
pp. 679-684
Author(s):  
Xin Tang Wang ◽  
Hai Jiang Wang ◽  
Ming Zhou

Compared with ordinary concrete composite floor, profiled sheet-ceramsite concrete composite floor(PSCCF) has the advantages of lighter weight and higher strength, and its resistant fire characteristics is better than ordinary concrete composite floor for stability of characteristics of ceramsite under high temperature. For study of the characteristics of the floor after fire, the experimental research on bearing capacity of the profiled sheet-ceramsite concrete composite floor after fire and the floor not subjected to fire load are further carried out at indoor temperature here. Based on the experimental results, effect of the fire on post-fire bearing capacity of the profiled sheet-ceramsite concrete composite floor is discussed, and the failure phenomenon and mechanism are analyzed. It is shown that he failure form of the profiled sheet-ceramsite concrete composite floor after fire has great change compared with the floor not subjected to fire load, but the bearing capacity of it is still higher.

2011 ◽  
Vol 255-260 ◽  
pp. 255-258
Author(s):  
Xin Tang Wang ◽  
Hai Jiang Wang ◽  
Ming Zhou ◽  
Yao Ji

For study of the post-fire characteristics of the profiled sheet-ceramsite concrete composite floor (noted as PSCCF) subjected to fire load, the experimental research on post-fire bearing capacity of a PSCCF after fire is carried out. Based on the experimental results, effect of the fire on post-fire bearing capacity of the profiled sheet-ceramsite concrete composite floor is discussed, and the failure phenomenon and mechanism are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after fire has great change compared with the floor not subjected to fire load, but the composite floor subjected to fire still exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 25kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.


2011 ◽  
Vol 243-249 ◽  
pp. 5231-5235
Author(s):  
Xin Tang Wang ◽  
Ming Zhou ◽  
Hai Jiang Wang ◽  
Zhi Guo Xie

In order to study the fire behavior of the profiled sheet-ceramsite concrete composite floor subjected to fire load, research on fire response and post-fire bearing capacity of a profiled sheet-ceramsite concrete composite floor subjected to dead load, which has no shearing nails, is carried out here through experiment. Based on the experimental results, the fire behavior and post-fire bearing capacity of the floor after exposure to fire are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after exposure to fire has obvious change compared with the floor not subjected to fire load, but the composite floor subjected to fire still exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 35kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.


2011 ◽  
Vol 117-119 ◽  
pp. 1677-1680
Author(s):  
Yao Ji ◽  
Xin Tang Wang ◽  
Ming Zhou ◽  
Hong Liang Sun

To study the fire performance of the profiled sheet-light aggregate concrete composite floor subjected to fire load, study of fire response and post-fire bearing capacity of a profiled sheet-lightweight aggregate concrete composite floor subjected to dead load is carried out. Based on the experimental results, the fire performance and post-fire bearing capacity of the floor after exposure to fire are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after exposure to fire still exhibits higher bearing capacity, and the ultimate value of the equivalent distributed load is up to 35kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-lightweight aggregate concrete composite floor after exposure to fire.


2011 ◽  
Vol 117-119 ◽  
pp. 1857-1860
Author(s):  
Xin Tang Wang ◽  
Ming Zhou ◽  
Ping Xin Sun

To study the post-fire behavior of the profiled sheet-ceramsite concrete composite floor after exposure to fire load, experimental research on post-fire bearing capacity of a profiled sheet-ceramsite concrete composite floor subjected to dead load, which has shearing nails, is carried out here. Based on the experimental results, the post-fire bearing capacity of the composite floor after exposure to fire is analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after exposure to fire has obvious change compared with the floor not subjected to fire load, but the composite floor subjected to fire load exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 30.86 kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.


2011 ◽  
Vol 694 ◽  
pp. 729-732
Author(s):  
Shun Qing Chen ◽  
Yu Min Ma

The chemistry composition of the high temperature oxidization under loads has been analyzed for the Cr5Mo alloy in this paper. The experimental research to the Fe, Cr and O elements have also been done. The difference between loads and no loads has been emphasized to the chemistry elements of the Cr5Mo alloy. The experimental results showed that the temperature couldn’t change the rate of the chemistry elements, but the loads could change them. The chemistry elements Fe ,Mo and Cr could change more obvious than other elements of the Cr5Mo alloy in this paper.


2011 ◽  
Vol 368-373 ◽  
pp. 911-914
Author(s):  
Hong Liang Sun ◽  
Xin Tang Wang ◽  
Ping Xin Sun

To study the fire performance of the profiled sheet-light aggregate concrete composite floor subjected to fire load, study of fire response and post-fire bearing capacity of a profiled sheet-lightweight aggregate concrete composite floor subjected to dead load is carried out. Based on the experimental results, the fire performance and post-fire bearing capacity of the floor after exposure to fire are analyzed. It is shown that the failure form of the profiled sheet-ceramsite concrete composite floor after exposure to fire still exhibits higher bending capacity, and the ultimate value of the equivalent distributed load is up to 30.69kN/m2, which may be used as basis of strengthening and repairing of the profiled sheet-ceramsite concrete composite floor after exposure to fire.


2011 ◽  
Vol 366 ◽  
pp. 272-275
Author(s):  
Wei Jun Yang ◽  
Ying Jie Zhou ◽  
Cong Cong Meng

In order to study the force performance of the short compression column of the Shale ceramisite concrete, the article have research the axis and eccentric of the eight Shale concrete rectangular short columns((l0/b≤4). As the article reach the component is divided into damage caused by pressure and destruction of tension, while it’s contingency rather than the ordinary concrete and plasticity development are shorter ; the bearing capacity of normal section by shale ceramisite Concrete is greater than specification value, it satisified with the requirement of structural load-bearing; Shale concrete short column under pressure and the strain meet a certain section of the plane-section assumption in the process of loading.


2010 ◽  
Vol 168-170 ◽  
pp. 674-678 ◽  
Author(s):  
Ming Zhou ◽  
Xin Tang Wang ◽  
Wan Zhen Wang

Mechanical behavior and bearing capacity of ordinary concrete filled steel tubular short column (NCSSC) and ceramsite concrete filled steel tubular short column (CCSSC) subjected to fire load are experimentally investigated. Effect of the parameters, such as the maximum value of fire temperatures, fire duration on the strength and ductility of the two types of specimens were especially discussed. The test results show that both of the specimens of NCSSC and CCSSC after fire have higher bearing capacity and better ductility, there was no descent segment in load-displacement curves of the most specimens after the fire load was subjected, and even the case that bearing load increased again after descent segment arose. It was concluded that the maximum response temperature of specimens and fire duration time has great effect on the axial bearing capacity of concrete-filled steel tubular short columns subjected to fire, and there is a turning point of temperature for the influence.


2013 ◽  
Vol 405-408 ◽  
pp. 2677-2680
Author(s):  
Yan Bo Li ◽  
Jian Zhong Liu ◽  
Su Juan Fu

In this paper, the temperature fields of concrete specimens reinforced by paste method were analyzed by experiment and ANSYS in the fire, it proved that the impact of reinforcement material on the temperature field of the specimens can be ignored, it identified that the best thickness of the fire-retardant coating is 40mm for steel-confined specimens and 50mm for CFRP-confined specimens. The calculations agreed well with the experimental results, it provides conditions for mechanical properties of the concrete reinforced by paste method at high temperature.


2013 ◽  
Vol 351-352 ◽  
pp. 541-544
Author(s):  
Jiong Feng Liang ◽  
Ming Hua Hu ◽  
Zhi Ping Deng

The flexural behavior of concrete beams reinforced with CFRP-PCPs composite rebars was studied. Experimental results showed that the performance of CFRP-PCPs composite rebars beams is superior to that of CFRP beams at service and ultimate and comparable and even better than RC beams at service condition. Flexural cracks of concrete beams reinforced with CFRP-PCPs composite rebars are hairline before prism cracking, and they widen after the prism cracking Keywords: CFRP-PCPs, composite rebars, beam, flexural


Sign in / Sign up

Export Citation Format

Share Document