Crack Resistance Evaluating of HSC Based on Thermal Stress Testing

2010 ◽  
Vol 168-170 ◽  
pp. 716-720 ◽  
Author(s):  
Bo Chen ◽  
Yue Bo Cai ◽  
Jian Tong Ding ◽  
Yao Jian

In order to evaluate the crack resistance of high strength fly ash concrete, concretes with different contents of silica fume and fly ash were compared with same strength grade by adjusting water to binder ratio. Compared with the concrete with 5% silica fume plus 35% fly ash,concrete with 40% fly ash has same mechanical properties and tensile strain as well as lower drying shrinkage. Complex crack resistance of high strength fly ash concretes were evaluated by Temperature Stress Testing Machine (TSTM). The results show that fly ash concretes have outstanding crack resistance because of higher allowable temperature differential and lower cracking temperature.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-zhu Quan ◽  
Hideo Kasami

In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.


1995 ◽  
Vol 22 (3) ◽  
pp. 621-636 ◽  
Author(s):  
Sujit Ghosh ◽  
K. W. Nasser

A comprehensive study was undertaken to determine the shrinkage, creep, and durability of high strength concrete (50–70 MPa) containing silica fume and lignite fly ash. The concrete mixtures contained normal CSA type 10 (ASTM type 1) portland cement, 10% condensed silica fume, and different amounts of fly ash that varied between 0 and 80% of the weight of binder in the mixture. The aggregates-to-binder ratio by weight was maintained at 5 and the weight of the superplasticizer was varied between 1.5% and 2.2% of the binder while the water-to-binder ratio was maintained at 0.27. The test program consisted of compressive strength tests at various ages on concrete cylinders; drying shrinkage tests at room temperature; creep tests of sealed and unsealed concrete at room temperature (21 °C (70°F)) and at high temperatures (up to 232 °C (450°F)) under three different stress regimes; frost resistance tests on concrete prisms up to 300 freezing and thawing cycles; and sulphate resistance tests on concrete prisms immersed in 5% Na2SO4 solution for up to 10 months. The results indicated that up to 60% fly ash replacement with 10% silica fume showed either superior or similar 28- and 56-day compressive strengths when compared with the 100% cement control mixture. Fly ash + silica fume concrete indicated lower shrinkage and long-term creep. Creep increased with increase in temperature due to physico-chemical processes, which were confirmed by microstructure analysis using the scanning electron microscope. The creep and shrinkage data of high fly ash + silica fume concrete fitted well to the current ACI creep and shrinkage model. Replacement of cement by up to 35% fly ash and 10% silica fume indicated enhanced frost resistance, without any air-entrainment. The addition of 8% air-entrainment to the 20% fly ash + 10% silica fume mixture increased the durability factor by about 10%. For the 50% fly ash + 10% silica fume mixture, the frost durability factor was found comparable to that of the 100% cement control mixture, and air entrainment did not improve its value appreciably. Sulphate resistance of concrete made with 100% CSA type 10 cement was found satisfactory; however, with increasing fly ash contents (up to 50%), the expansion due to sulphate action was suppressed. A study of matrix morphology and microstructure bonding, using the scanning electron microscope, helped to explain the observed results in a comprehensive manner. Key words: creep, shrinkage, compressive strength, frost resistance, durability factor, sulphate resistance, fly ash, silica fume, high-strength concrete, SEM micrograph, matrix morphology.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 971-985
Author(s):  
Rakesh Choudhary ◽  
Rajesh Gupta ◽  
Thamer Alomayri ◽  
Abhishek Jain ◽  
Ravindra Nagar

2006 ◽  
Vol 302-303 ◽  
pp. 150-154 ◽  
Author(s):  
Shu Hua Liu ◽  
Kun He Fang ◽  
Zeng Li

As high strength concrete (HSC) is widely used in construction, more and more attention has been paid to crack resistance of it. In order to improve crack resistance of HSC, we study the influence of mineral admixtures (ground slag, silica fume and fly ash) on brittleness and characteristic length as crack resistance’ indexes. Testing researches shows, without admixture, crack resistance of HSC is the lowest; when one of the three mineral admixtures added, crack resistance increases dramatically; when two of the three mineral admixtures are added in the concrete, crack resistance increases a little more and it does not change very much no matter which two are mixed; crack resistance comes out the highest when the three mineral admixtures are added in concrete. Mechanism analysis shows, Adding fine and high active ground slag, silica fume and fly ash into concrete can greatly improve microstructure of transition zone, decrease Ca(OH)2, ettringite and porosity in concrete, increase C-S-H gel and greatly reduce the original micro-cracks in the transition zone.


2011 ◽  
Vol 250-253 ◽  
pp. 626-629
Author(s):  
Hong Zhu Quan

The purpose of this study was to improve the durability of fly ash concrete. As a result, by making fly ash concrete into non-air-entraining type and using durability improving admixture, the compressive strength of fly ash concrete increases 10%~30%, reducing initial compressive strength defects; drying shrinkage is controlled at 60% compared to when the mixture is not added; carbonation of fly ash concrete can be considered roughly proportional to water-cement ratio regardless of water-binder ratio or fly ash replacementratio; the freeze damage resistance improves for 2 weeks curing in air (drying process). Finally, by making fly ash concrete from non-air entraining type and using durability improving admixture, the difficulty of controlling air content in fly ash concrete is reduced and quality management is simplified.


2019 ◽  
Vol 8 (3) ◽  
pp. 5990-5994 ◽  

In the present study, high strength high volume fly ash concrete of M70 grade is developed and its durability properties such as water absorption capacity, porosity, and sorptivityare ascertained. It was found that high volume fly ash does not yield high strength so silica fume is added for early strength gain and for later strength gain lime required for complete pozzolonic action is added to achieve high performance concrete. In this study after testing for various combinations of quaternary blended concrete it was reported that 30% cement +70% fly ash as total powder achieves high strength of nearly 70 MPa, when silica fume of 10% by weight of powder and 30% of lime by weight of powder are added to the total powder content. The high strength high volume concrete developed with this optimum quantities of quaternary blends will be evaluated for the performance.It was found that water absorbtion in high strength high volume fly ash concrete reduced by nearly 85% and porosity is reduced by 34%.


Sign in / Sign up

Export Citation Format

Share Document