Self-Aligned Growth and Optimization of Carbon Nanotube

2011 ◽  
Vol 179-180 ◽  
pp. 316-319
Author(s):  
Ying Wu ◽  
Zhao Ying Zhou ◽  
Li Jun Sun ◽  
Jin Zhang ◽  
Xiao Yun Zhang

CNT-based integrated components show potential application in many fields. The growth of carbon nanotube is very important process for the fabrication of CNT-based component. Self-aligned growth of carbon nanotube method by gas-flowing techniques is reported in this paper, which results in CNT growth along gas-flow direction. The effect of gas-flow was analyzed with numerical simulation and the growth optimization was put forward. Scanning electronic microscopy (SEM) images demonstrate that the self-aligned carbon nanotube can be realized by a gas-flowing CVD process and the distribution of carbon nanotube can be controlled by the gas-flowing rates. This research provides a parallel method for the large-scale integration of carbon nanotube into electronic, optoelectronic, and sensing systems.

Author(s):  
Abu Bony Amin ◽  
S M Shakil ◽  
Muhammad Sana Ullah

The aroused quest to reduce the delay at interconnect level is the main urge of this paper to come across a configuration of Carbon Nanotube (CNT) bundle namely squarely packed bundle of composite CNTs. The approach, demonstrated in this paper, adapts the composite bundle to adopt for high speed Very Large Scale Integration (VLSI) interconnect with technology sizing down. To reduce the delay of the proposed configuration of composite CNT bundle, the behavioral change of Resistance (R), Inductance (L) and Capacitance (C) has been observed with respect to both width of the bundle and diameter of the CNTs in the bundle. Consequently, the performance of the modified bundle configuration is compared with previously developed configuration namely squarely packed bundle of dimorphic MWCNTs in terms of propagation delay and crosstalk delay at local, semiglobal and global level interconnect. The proposed bundle configuration is ultimately enacted as better one for 32nmand 16nmtechnology node and suitable for 7nmas well.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


Sign in / Sign up

Export Citation Format

Share Document