Effect of Ground Phosphate Slag on the Resistance to Chloride Ion Penetration of Concrete

2011 ◽  
Vol 194-196 ◽  
pp. 924-929
Author(s):  
Jian Xiong Ye ◽  
Ye Jiang Wang ◽  
Shuang Zhao ◽  
Ming Chao Yang ◽  
Chang Hui Yang

The permeability resistance of concrete with ground phosphate slag(GPS) against chloride ion penetration was tested according to ASTM1202 and by nitrogen adsorption method. Test results show that by adding ground phosphate slag to concrete, the chloride diffusion coefficient of concrete decreases, and the permeability resistance of concrete against chloride ion penetration increases with improvement of its pore structure. The pores in concrete are refined and the percentage of the pores with diameter less than 20nm in concrete increases. The improvement of pore structure of the concrete by ground phosphate slag is much better than that by the ground granulated blast furnace slag or fly ash, while the addition is 30 percent. The ability of additive to improve the permeability resistance of concrete against chloride ion penetration is in following order: fly ash > ground phosphate slag > ground granulated blast furnace slag.

In conventional concrete, one of the ingredients Cement is partially replaced by Ground Granulated Blast Furnace Slag and its nature is studied in this project.. In the present paper, a comparison of Chloride ion penetration is been done on Concrete specimens with partial GGBS replacement. Two tests have been performed on the concrete specimens in both normal environment and artificial marine environment. One is the conventional RCPT and the other one is the chloride ion penetration test using silver nitrate. Comparison of both the tests under normal and marine environment is the main aim of this paper. After compiling the data both RCPT and the Chloride ion penetration test goes hand in hand and this proves the compatibility of the new chloride ion penetration test using silver nitrate. This work has the comparison of the concrete specimens in normal and marine environments as well with different levels of GGBS replacement.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2257 ◽  
Author(s):  
Anna Król ◽  
Zbigniew Giergiczny ◽  
Justyna Kuterasińska-Warwas

The paper presents the composition and properties of low-emission ternary cements: Portland multicomponent cement CEM II/C-M and multicomponent cement CEM VI. In the ternary cements, Portland clinker was replaced at the levels of 40% and 55% with a mixture of the main components such as limestone (LL), granulated blast furnace slag (S) and siliceous fly ash (V). Portland multicomponent cements CEM II/C-M and CEM VI are low-emission binders with CO2 emissions ranging from 340 (CEM VI) kg to 453 (CEM II/C-M) kg per Mg of cement. The results obtained indicate the possibility of a wider use of ground limestone (LL) in cement composition. This is important in the case of limited market availability of fly ash and granulated blast furnace slag. The tests conducted on concrete have shown that the necessary condition for obtaining a high strength class and durability of concrete from CEM II/C-M and CEM VI ternary cements is low water–cement ratio. Durability characteristics of concrete (carbonation susceptibility, chloride ion permeation, frost resistance) made of CEM II/C-M and CEM VI cements were determined after 90 days of hardening. This period of curing reflects the performance properties of the concrete in a more effective way.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 731
Author(s):  
Lin Wang ◽  
Chunxue Shu ◽  
Tiantian Jiao ◽  
Yong Han ◽  
Hui Wang

This paper studies the influence of assembly unit of expansive agents (CaO and calcium sulphoaluminate) on the limited and free compressive strengths, the limited expansion rate, carbonation resistance, chloride ion penetration resistance and corrosion resistance of reinforcement concrete. The dosages of expansive agent were 0%, 3%, 6%, 9%, and 12% by the total amount of cementitious materials. Two kinds of mineral admixture (blast furnace slag and fly ash) were applied in this study. Results show that suitable dosage (lower than or equal to 9%) of double expansion agent with a large amount of mineral admixtures can improve the limited and free compressive strengths. However, when the dosage of the double expansion agent is higher than 9%, the addition of the double expansion agent leads to the reduction of limited and free compressive strengths. The variation of the limit expansion rate reaches the maximum value when the curing age is 14 days. The increasing addition of expansive agents and lower water-binder ratio demonstrate positive effect on the limited expansion rate. Concrete with 60% mineral admixtures (fly ash and ground granulated blast furnace slag) shows lower limited expansion rate and higher compressive strength than the concrete with 50% mineral admixtures. Finally, the incorporation of double expansion agent can improve the resistance to carbonation, chloride ion penetration resistance, anti-corrosion of steel bars and mechanical strengths (the limited and free compressive strengths).


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Sign in / Sign up

Export Citation Format

Share Document