Observations on the Correlation between Statistics of some Fatigue Crack Growth Data and Applied Loads for 2024-T351

2011 ◽  
Vol 197-198 ◽  
pp. 1626-1630
Author(s):  
Chih Chung Ni

Three sets of fatigue crack growth data tested under different constant-amplitude loads for CT specimens made of 2024 T-351 aluminum alloy are released, and the analyzed results presented in this study are specially emphasized on the correlation between statistics of these scattered fatigue data and their applied loads. Investigating the scatters of initiation cycle and specimen life, it was found that both the mean and standard deviation of initiation cycle, as well as the mean and standard deviation of specimen life, decrease as applied stress amplitude increases. Moreover, the negatively linear correlation between the median values of initiation cycle and applied stress amplitudes presented in linear scale, and between the median values of specimen life and applied stress amplitudes presented in logarithmic scale were found, where the initiation cycle and specimen life are all best depicted by normal distributions for all three data sets. Finally, the mean of intercepts and mean of exponents of Paris-Erdogan law for each data set were studied, and it was found that the mean of intercepts decreases greatly as applied stress amplitude increases, while the mean of exponents decreases slightly.

1969 ◽  
Vol 11 (3) ◽  
pp. 343-349 ◽  
Author(s):  
L. P. Pook

Some fatigue crack growth data have been obtained for age-hardened beryllium copper. The fatigue crack growth rate was found to be very dependent on the hardness and tensile mean stress. This dependence is believed to be associated with the intense residual stresses surrounding Preston-Guinier zones.


Author(s):  
Daisuke Kobayashi ◽  
Katsuhiro Takama ◽  
Tomihiko Ikeda

Abstract Needless to say, it is important to estimate the stress applied to a material when conducting failure analysis. In recent years, a material assessment method using electron back-scatter diffraction (EBSD) has been developed. It has been reported that a characteristic misorientation distribution corresponding to the fracture mode is seen in cross-sectional EBSD observation near the fracture surface of a Ni-based superalloy. Furthermore, the authors discovered EBSD striations on the crack cross-section, which is formed with each fatigue crack growth during a turbine shut-down process. This was discovered in misorientation analysis on a single-crystal superalloy blade used in a commercial land-based gas turbine. Since Ni-based superalloys have high deformation resistance, they do not undergo enough ductile deformation to form striations at the crack tip on the fracture surface during fatigue crack growth, and, as a result, striations corresponding to cyclic loadings are rarely observed in fractography. Even in such a Ni-based superalloy with brittle crack growth, the fatigue crack growth rate and the applied stress can be estimated by measuring EBSD striation spacing in misorientation analysis. However, a practical problem in assessment is that the resolution limit fixed with field emission scanning electron microscopes (FE-SEM) determine the range in which crack growth rate can be assessed. Hence, it is difficult to clearly discriminate the EBSD striations when the fatigue crack growth rate is too low, such as in the low stress intensity factor range (ΔK) region. The applied stress can be calculated from ΔK. Therefore, in this paper, in order to estimate the applied stress during fatigue crack growth, we focused on estimating ΔK by measuring the plastic zone size along the crack growth.


2002 ◽  
Vol 124 (4) ◽  
pp. 385-390
Author(s):  
Ki-Ju Kang ◽  
Seon-Ho Choi ◽  
Tae-Sung Bae

Fatigue tests were performed using single lap-joint specimens to obtain near-threshold fatigue crack growth data of solder joint under mode-II load. Attention was focused on the effect of high temperature aging and microstructures separately from the intermetallics. As a result, it was shown that the long cast time yielded the intermetallics and microstructures of the solder invariable regardless of aging condition. The granular micro-structure of the air-cooled specimens was shown to be inferior to the laminated micro-structure of the furnace-cooled specimens. Also, transition of fatigue crack behavior with ΔJ and the procedure of fatigue crack propagation from the pre-crack tip were discussed.


Author(s):  
Paulo Gioielli ◽  
Jaime Buitrago

Fatigue crack-growth modeling has a significant impact in establishing defect acceptance criteria for the inspection of fracture-critical, girth-welded components, such as risers and tendons. ExxonMobil has developed an experimental technique to generate crack-growth data, in actual welded tubulars, that account for the particular material properties, geometry, and residual stresses. The technique is fully compatible with conventional fracture mechanics models. It uses a series of pre-designed notches made around the welds on a production quality, full-scale specimen that is tested efficiently in a resonant fatigue setup. The crack development from notches is monitored during testing and evaluated post-mortem. Given its simplicity and high loading frequency, the technique provides growth data germane to the component at hand at a lower cost and faster than standard, small-scale tests.


Sign in / Sign up

Export Citation Format

Share Document