Monitoring of Microbial Community Inhabiting a Low-Grade Copper Sulphide Ore by Quantitative Real-Time PCR Analysis of 16S rRNA Genes

2007 ◽  
Vol 20-21 ◽  
pp. 539-542 ◽  
Author(s):  
Francisco Remonsellez ◽  
F. Galleguillos ◽  
Sonestie Janse van Rensburg ◽  
G.F. Rautenbach ◽  
Pedro A. Galleguillos ◽  
...  

Microbial heap bioleaching is being used as an industrial process to recover copper from low grade ores. It is known that a consortium of different microorganisms participates in this process. Therefore identification and quantification of communities inhabiting heap bioleaching operations is a key step for understanding the dynamics and role of these microorganisms in the process. A quantitative real-time PCR approach was used to investigate the microbial dynamics in this process. To study the microbial population inhabiting a low-grade copper sulphide ore bioleaching industrial heap process at Escondida Mine in Chile, 16S rRNA genetic libraries were constructed using bacterial and archaeal universal primers. Phylogenetic analyses of sequences retrieved from genetic libraries showed that the community is mainly composed by microoganisms related to Acidithiobacillus ferrooxidans (2 strains), Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans, Leptospirillum ferriphilum and the archaea Ferroplasma. Specific primers for real-time PCR determination were designed and tested to amplify each of the sequences obtained by cloning. Standard curves for real time PCR were performed using plasmid DNA from selected clones. This methodology is actually being used to monitor relevant microorganisms inhabiting this low-grade copper sulphide ore bioleaching industrial heap.

2006 ◽  
Vol 50 (6) ◽  
pp. 1913-1920 ◽  
Author(s):  
Steve Aellen ◽  
Yok-Ai Que ◽  
Bertrand Guignard ◽  
Marisa Haenni ◽  
Philippe Moreillon

ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether rRNA could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts and compared to quantitative real-time PCR amplification of either the 16S rRNA genes or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Tol1 mutant lost ≤1 log10 CFU/ml. Amplification of a 427-bp fragment of 16S rRNA genes yielded amplicons that increased proportionally to viable counts during bacterial growth but did not decrease during drug-induced killing. In contrast, the same 427-bp fragment amplified from 16S rRNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Tol1 mutant (≥4 log10 CFU/ml and ≤1 log10 CFU/ml, respectively) and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments, the experiments were repeated by amplifying a 119-bp region internal to the original 427-bp fragment. The amount of 119-bp amplicons increased proportionally to viability during growth but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical for differentiation between live and dead bacteria.


2005 ◽  
Vol 49 (8) ◽  
pp. 3166-3170 ◽  
Author(s):  
Erik Glocker ◽  
Marco Berning ◽  
Monique M. Gerrits ◽  
Johannes G. Kusters ◽  
Manfred Kist

ABSTRACT The effectiveness of recommended first-line therapies for Helicobacter pylori infections is decreasing due to the occurrence of resistance to metronidazole and/or clarithromycin. Quadruple therapies, which include tetracycline and a bismuth salt, are useful alternative regimens. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA genes (rrnA and rrnB) affecting nucleotides 926 to 928, are already emerging and can impair the efficacies of such second-line regimens. Here, we describe a novel real-time PCR for the detection of 16S rRNA gene mutations associated with tetracycline resistance. Our PCR method was able to distinguish between wild-type strains and resistant strains exhibiting single-, double, or triple-base-pair mutations. The method was applicable both to DNA extracted from pure cultures and to DNA extracted from fresh or frozen H. pylori-infected gastric biopsy samples. We therefore conclude that this real-time PCR is an excellent method for determination of H. pylori tetracycline resistance even when live bacteria are no longer available.


2011 ◽  
Vol 49 (10) ◽  
pp. 3691-3693 ◽  
Author(s):  
M. Kramski ◽  
A. J. Gaeguta ◽  
G. F. Lichtfuss ◽  
R. Rajasuriar ◽  
S. M. Crowe ◽  
...  

2005 ◽  
Vol 71 (8) ◽  
pp. 4214-4219 ◽  
Author(s):  
Abu Sadeque Md Selim ◽  
Piyanuch Boonkumklao ◽  
Teruo Sone ◽  
Apinya Assavanig ◽  
Masaru Wada ◽  
...  

ABSTRACT A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345T and Lactobacillus fermentum JCM 1173T, and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 × 103 cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 104 cells/g feces on day 4 and 105 cells/g feces on days 11 to 18. However, cell populations of 106 to 107 cells/g feces were detected in the second trial. The total bacterial count, measured by 4′,6-diamidino-2-phenylindole (DAPI) staining, was approximately 1011 cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.


2021 ◽  
Vol 19 ◽  
Author(s):  
Mina Ahmadi ◽  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Identification of non-tuberculosis mycobacteria by culture and phenotypic description is commonly used; however, it takes 4 to 6 weeks or even a longer time for slow growing species as well as for identification of some species that may be missed by biochemical characteristics methods. This study aimed to evaluate Real Time PCR for Detection of NTM by Amplification of Internal Transcribed Spacer (ITS) and 16S rRNA. Methods: In our investigation, using Real Time PCR and two pairs of unique primers targeted to ITS and 16S rRNA genes as well as Beta- actin as an internal control, Non tuberculosis mycobacteria species were detected. Results: Real time PCR was performed on the prepared dilutions. In addition, the threshold of sensitivity in this study was 10pg. To test the specificity, the genome of several bacteria responsible for respiratory infections was used, in which only the test response related to the non-tuberculosis mycobacterium genome and internal control was positive. Conclusion: In this research, an effective and up-to-date Real Time PCR method was used to design a diagnostic kit from all aspects. To avoid any error or mistake and to minimize the false results, internal control was used. The ability to design diagnostic kits allows us to increase efficiency, minimize mistakes, and save a considerable amount of time and cost.


2007 ◽  
Vol 70 (7) ◽  
pp. 1650-1655 ◽  
Author(s):  
ELAINE CRISTINA PEREIRA DE MARTINIS ◽  
ROBERT E. DUVALL ◽  
ANTHONY D. HITCHINS

Quantifying foodborne pathogens at concentrations of 0.1 to 1,000 CFU/g of food generally involves most-probable-number (MPN) enumeration, which takes at least 4 days. A real-time PCR assay (RTi-PCR) was developed to accelerate MPN enumeration of foodborne Listeria monocytogenes. Foods were spiked from 70 to 110 CFU/g, and triplicate subportions from 0.0001 to 1 g were selectively enriched for 48 h at 30°C. For standard MPN enumeration, the enrichments were subcultured on Oxford agar (48 h at 35°C) to isolate Listeria. For RTi-PCR MPN, the L. monocytogenes cells from the same enrichments were washed and resuspended in 2 ml of sterile water. DNA was extracted by boiling for 10 min. The DNA in the extract's supernatant was targeted with published oligonucleotide primers for amplifying an Lmo-specific sequence of 16S rRNA genes. Amplification was continuously monitored with SYBR Green. The resulting amplicon was characterized by its melting temperature. The L. monocytogenes specificity of the primers was confirmed by testing L. monocytogenes (15 strains), Listeria innocua (11 strains), and Listeria welshimeri, Listeria seeligeri, Listeria ivanovii, and Listeria grayi (1 strain each). Quantitatively spiked milk, lettuce, smoked salmon, Brie cheese, ice cream, pork pâté, salami, ready-to-eat shrimp, raw ground beef, and fresh soft cheese were enumerated by both the standard and the PCR MPN method. The paired results from the two MPN methods agreed well, except for the fresh cheese. For some foods, 1-g samples required a decimal dilution for a positive test result, suggesting concentration-dependent food ingredient interference with the RTi-PCR. This RTi-PCR method reduced the time necessary for the MPN enumeration of foodborne L. monocytogenes from 4 to 2 days.


Sign in / Sign up

Export Citation Format

Share Document