Alkylation of Phenol with Cyclohexanol Catalyzed by Acidic Ionic Liquid

2011 ◽  
Vol 233-235 ◽  
pp. 188-193 ◽  
Author(s):  
Hai Bing Yu ◽  
Jun Nan ◽  
Jing Cheng Zhang ◽  
Jian Zhou Gui

Alkylation of phenol with cyclohexanol catalyzed by acidic ionic liquid has been investigated. The influences of reaction temperature, reaction time, reactant ratio (mol ratio of phenol to cyclohexanol), the amount and the recycle of ionic liquid on catalytic activity were studied. The conversion of phenol and the selectivity of paracyclohexylphenol were 75.5% and 61.6%, respectively, under optimum reaction conditions. The ionic liquid was utilized repeatedly over three times without remarkable loss of catalytic activity.

2013 ◽  
Vol 807-809 ◽  
pp. 2774-2778
Author(s):  
Lin Ping Sun ◽  
Qian Qiao

Transesterification of dimethyl 2,6-napthalene dicarboxylate with ethylene glycol over metal salts catalyst was empolyed as probe reation. The effects of reaction temperature, reaction time, the molar ratio of ethylene glycol to dimethyl 2,6-napthalene dicarboxylate, N2 flowrate, kind of metal salt on the conversion of dimethyl 2,6-napthalene dicarboxylate have been investigated. The results showed that the sequence of influence was as follows: reaction temperature > reaction time > ethylene glycol/dimethyl 2,6-napthalene dicarboxylate molar ratio > amount of the catalyst. The optimum reaction conditions were 210 oC of reaction temperature, 240 min of reaction time, 2.8 molar ratio of ethylene glycol to dimethyl 2,6-napthalene dicarboxylate, 60 ml/min of N2, amount of zinc acetate being 0.08 % / mole of dimethyl 2,6-napthalene dicarboxylate.


2013 ◽  
Vol 712-715 ◽  
pp. 502-505
Author(s):  
Shu Qiong Liao ◽  
Xiao Yu Peng ◽  
Xue Wang Zhang ◽  
Ke Lin Huang ◽  
Ben Wang ◽  
...  

Micro-molecular dextran was prepared in sub-critical water/CO2 by hydrolysis of dextran20. The obtained products were mainly characterized by FT-IR and GPC. Furthermore, the reaction temperature, reaction time, reaction pressure, solid-liquid radio and stirring speed were systematically investigated during the work. The optimum reaction conditions are as follows: the reaction temperature was 160°C; the reaction time was 60 min; the reaction pressure was 2.5MPa; the solid-liquid ratio was 0.6 and the stirring speed was 300r/min.


2014 ◽  
Vol 893 ◽  
pp. 23-26 ◽  
Author(s):  
Na Liu ◽  
Yong Shuai Ma ◽  
Ke Wen Shu ◽  
Bo Wu ◽  
Dong Zhang

The catalytic effect of Brønsted acidic ionic liquid for PET hydrolysis reaction under microwave irradiation has been investigated through orthogonal experiment in this article, and the influence of main reaction conditions has also been studied. The results shown that the influence level sequence of reaction factors was: catalyst kind > reaction time > reaction temperature > catalyst dosage. According to a further study of catalyst dosages influence on PET depolymerization degree, the optimal reaction condition was finally concluded as below: [Hexanemi [HSO4] used as catalyst, catalyst dosage: 0.01 mol/2 g PET, reaction time: 210 min, reaction temperature: 195 °C.


2019 ◽  
Vol 43 (9-10) ◽  
pp. 419-425 ◽  
Author(s):  
Huanhuan Dong ◽  
Shichao Xu ◽  
Jing Wang ◽  
Yuxiang Chen ◽  
Liangwu Bi ◽  
...  

Selective aerobic oxidation of α-pinene to high-value products is a major challenge in chemistry. Metalloporphyrins are proved to be selective catalysts for aerobic oxidation of simple hydrocarbons. Herein, we extend this method to more complex substrates using metallodeuteroporphyrins as model catalysts. It was found that the oxidation occurs mainly on the C=C and allylic C–H bonds of α-pinene influenced by the reaction temperature, reaction time, catalyst concentration, and oxygen flow rate. Allylic C–H oxidation products are obtained with a maximum selectivity value of 78.4% using the following reaction conditions: 105°C, 7 h, 5 ppm, and 60 mL/min. The influence of the metal nuclei of the metallodeuteroporphyrins on this reaction is also investigated. It was found that metallodeuteroporphyrins with Fe3+ as the metal nucleus exhibit the highest catalytic activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Subrata Das ◽  
Ashim Jyoti Thakur ◽  
Dhanapati Deka

Biodiesel was produced from high free fatty acid (FFA)Jatropha curcasoil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis.


2013 ◽  
Vol 821-822 ◽  
pp. 1081-1084 ◽  
Author(s):  
Xian Ye Qin ◽  
Biao Liu ◽  
Bing Han ◽  
Wen Bo Zhao ◽  
Shui Sheng Wu ◽  
...  

The catalytic activity of many Lewis and Bronsted acid for the synthesis of diethyl carbonate (DEC) from ethyl carbamate (EC) and ethanol was evaluated in a bath reactor. Pyrophosphoric acid (H4P7O2) which showed the best activity was selected to further investigate the effect of reaction conditions, such as reaction temperature, catalyst dose and reaction time, on the yield of DEC. Under the optimal conditions, DEC yield can reach 29.1%.


2014 ◽  
Vol 1004-1005 ◽  
pp. 703-706
Author(s):  
Xiao Yi Shen ◽  
Hong Mei Shao ◽  
Zhi Meng Wang ◽  
Yu Chun Zhai

Na2SO4 solution that was obtained from ZnSO4 solution after Zn2+ precipitation using Na2CO3 was used as raw material. The Na2SO4·7H2O crystallization was obtained through cooling the Na2SO4 solution, and then the solution was cycled. The Na2SO4·7H2O was dried and then put into a porcelain boat located in a roaster. When the reaction between Na2SO4 and CO ended, the Na2S was obtained. The influences of reaction temperature, reaction time and material thickness on the conversion rate were discussed. The appropriate reaction conditions were reaction temperature 675°C, reaction time 120min and material thickness less than 4cm.


2014 ◽  
Vol 1004-1005 ◽  
pp. 885-890 ◽  
Author(s):  
Yan Lei Song ◽  
Yong Shui Qu ◽  
Chong Pin Huang ◽  
Li Hai Ge ◽  
Ying Xia Li ◽  
...  

The PIL which were prepared from imidazole and epichlorohydrin were used as catalysts for the conversion of cellobiose to 5-HMF. Effects of the catalyst anion, solvents, reaction temperature, and recycling time were investigated in detail. The optimum reaction conditions for conversion of cellobiose into 5-HMFcatalysed by [IMEP]BF4 were temperature 180 oC, cellobiose 0.5 g, and [IMEP]BF4 0.25 g in DMSO(30 mL). In this condition the yield of 5-HMF can reach 39.2% for 420min. The good positive correlation between the concentration of glucose and the formation rate of 5-HMF was given, and the conversion of glucose into 5-HMF is the key step of formation of 5-HMF from cellobiose. Moreover, [IMEP]BF4 has well cycle performance in the optimum reaction condition.


2013 ◽  
Vol 781-784 ◽  
pp. 280-282
Author(s):  
Zong Cheng Miao ◽  
Yi Wei Wang ◽  
Yuan Yuan Li ◽  
Lei Zhang ◽  
Xin Zhang ◽  
...  

In order to obtain the important liquid crystal intermediate with trifluoromethyl substitutent, Sonogashira coupling reaction was used to synthesize the compound. In this paper, the intermediate was synthesized by 4'-Iodo-4-pentyl-biphenyl and trimethyl silyl acetylene (TMSA) as raw materials. During the synthesis, the optimum reaction conditions were obtained, that the mol ratio of 4'-Iodo-4-pentyl-biphenyl and trimethyl silyl acetylene is 1:2, the reaction temperature is 30 oC, and the reaction time is 10 h.


2012 ◽  
Vol 550-553 ◽  
pp. 400-403 ◽  
Author(s):  
Xue Nan Sun ◽  
Li Cui ◽  
Tong Kuan Xu ◽  
Da Zhi Wang

Benzaldehyde 1, 2-propanediol acetal was synthesized from benzaldehyde and 1, 2-propanediol in the presence of ionic liquid [HMIM]HSO4. The effect of the amount of catalyst, reaction time, reaction temperature, and the molar ratio of raw materials agent on the product yield was investigated respectively. Experimental results demonstrate that ionic liquid [HMIM]HSO4is a good catalyst for preparation of benzaldehyde 1, 2-propanediol acetal. Results showed the optimal reaction conditions are as follows: the mole ratio of benzaldehyde to 1, 2-propanediol is 1:1.3, the amount of catalyst is 3.0g, the reaction temperature is 343K, and the reaction time is 4h. The achieved yield of acetal is 78. 7%.


Sign in / Sign up

Export Citation Format

Share Document