Preparation Mico/Nano Composite Particles and their Applications for Dye-Sensitized Solar Cells

2011 ◽  
Vol 239-242 ◽  
pp. 202-205
Author(s):  
Ting Lung Chiang ◽  
Chuen Shii Chou ◽  
Der Ho Wu ◽  
Chin Min Hsiung

This study investigated the applicability of TiO2/Au (or TiO2/Ag) composite particles, which probably have the plasmon resonance effect, on FTO-glass substrate of the working electrode of a DSSC. The dry particle coating technique was utilized to coat the surfaces of TiO2 particle with nano-sized Au (or Ag) powder particles. A layer of TiO2/Au (or TiO2/Ag) composite particles was deposited on the FTO-glass substrate of the working electrode, and it was then sintered in a high-temperature furnace. The working electrode covered with a TiO2/Au (or TiO2/Ag) thin film was kept immersed in a solution of N-719 (Ruthenium) dye for 12 h. Finally, the DSSC was assembled, and the short-circuit photocurrent; the open-circuit photovoltage, and the power conversion efficiency η of DSSC were measured using a home-made I-V measurement system. This study also examined the effects of the mass ratio of TiO2 to Au (or Ag) and the duration of dry coating on the η of the DSSC. If the duration of dry coating is adequate, the η of the DSSC with TiO2/Au (or TiO2/Ag) composite particles increased with increase in the percentage of Au (or Ag) in the composite particles. Most importantly, this study shows that the power conversion efficiency η of the DSSC with a film of TiO2/Au (or TiO2/Ag) on the working electrode always exceeds that of the conventional DSSC due to presence of the Schottky barrier, which is probably created in the TiO2/Au (or TiO2/Ag) composite particle.

2008 ◽  
Vol 8 (9) ◽  
pp. 4761-4766 ◽  
Author(s):  
Dong Wook Kim ◽  
Jin Joo Choi ◽  
Man Ku Kang ◽  
Yongku Kang ◽  
Changjin Lee

We prepared organic sensitizers (S1 and S2) containing julolidine moiety as a donor, phenyl or phenylene thiophene units as a conjugation bridge, and cyano acetic acid as an acceptor for dye sensitized solar cells. S1 exhibited two absorption maxima at 441 nm (ε = 26 200) and 317 nm (ε = 15 500) due to the π–π* transition of the dye molecule. S2 dyes with an additional thiophene unit showed the absorption maximum extended by 18 nm. DSSCs based on S1 dye achieved 2.66% of power conversion efficiency with 8.3 mA cm−2 of short circuit current, 576 mV of open circuit voltage, and 0.56 of fill factor. DSSCs using S2 dye with a longer conjugation attained only 1.48% of power conversion efficiency. The 0.21 V lower driving force for regeneration of the S2 dye compared to the S1 dye is one of the reasons for low conversion efficiency of the S2 dye.


2011 ◽  
Vol 239-242 ◽  
pp. 1747-1750 ◽  
Author(s):  
Ting Lung Chiang ◽  
Chuen Shii Chou ◽  
Der Ho Wu ◽  
Chin Min Hsiung

This study investigates the applicability of p-type NiO in the working (or counter) electrode of a dye-sensitized solar cell (DSSC). The working electrode was designed and fabricated by depositing a film of TiO2/NiO composite particles, which were prepared by mixing the Ni powder with TiO2 particles using dry mixing method. The counter electrode was fabricated by depositing a NiO film on top of a Pt film, which has been deposited on a FTO glass using an ion-sputtering coater (or E-beam evaporator). This study shows that the power conversion efficiency of the DSSC with TiO2/NiO composite particles (3.80%) substantially exceeds that of the conventional DSSC (3.16%) due to the effects of the NiO barrier and the n-p junction. Aside from this, the power conversion efficiency of a DSSC with a Pt(E)/NiO counter electrode (4.28%) substantially exceeds that of a conventional DSSC with a Pt(E) counter electrode on which a Pt film was deposited using an E-beam evaporator. This result is attributed to the fact that the NiO film coated on the Pt(E) counter electrode improves the electrocatalytic activity of the counter electrode.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Vol 11 (3) ◽  
pp. 674-678
Author(s):  
Shibing Zou ◽  
Lingting Song ◽  
Junhong Duan ◽  
Le Huang ◽  
Weiqing Liu ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


Sign in / Sign up

Export Citation Format

Share Document