dry mixing
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 16 (4) ◽  
pp. 192-211
Author(s):  
Mindaugas Zakarka ◽  
Šarūnas Skuodis ◽  
Rimantas Mackevičius ◽  
Danutė Sližytė

This research work represents updated results of cohesive soil strength improvement with mineral wool fly ash. In the investigations, these materials were used: Portland cement CEM I 42.5 R, fly ash obtained from a mineral wool production process, sand and clay. Mixtures were prepared as follows: dry mixing of Portland cement and fly ash; dry mixing of sand and clay; adding water into Portland cement and fly ash; adding sand and clay mixture into already prepared Portland cement and fly ash suspension. The content of fly ash replacing Portland cement varied from 0% to 40%, and the content of sand mixture varied from 20% to 60%. After 24 hours, investigated samples were taken out from cylinder forms and kept in a desiccator with a humidity of 90% and at 20 °C temperature. Uniaxial compressive strength of the samples was determined after 548 days and compared to previous research results obtained after 7, 28 and 183 days. The most predictable compressive strength is for samples, which composition is 100% cement and 0% fly ash. In these samples, the highest compressive strength was obtained, comparing them to the other investigated samples. Compressive strength change is minimal for samples with a 10–30% amount of fly ash. The most significant decrease in compressive strength was obtained for samples with a 40% fly ash after 183 days. Nonetheless, the compressive strength of these samples increased after 548 days and is almost the same as for samples with 100% Portland cement.


2021 ◽  
Vol 5 (12) ◽  
pp. 315
Author(s):  
Dhruv Sood ◽  
Khandaker M. A. Hossain

Alkali-activated binders (AABs) are developed using a dry mixing method under ambient curing incorporating powder-form reagents/activators and industrial waste-based supplementary cementitious materials (SCMs) as precursors. The effects of binary and ternary combinations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3), and incorporation of polyvinyl alcohol (PVA) fibers on fresh state and hardened characteristics of 16 AABs were investigated to assess their performance for finding suitable mix compositions. The mix composed of ternary SCM combination (25% fly-ash class C, 35% fly-ash class F, and 40% ground granulated blast furnace slag) with multi-component reagent combination (calcium hydroxide and sodium metasilicate = 1:2.5) was found to be the most optimum binder considering all properties with a 56 day compressive strength of 54 MPa. The addition of 2% v/v PVA fibers to binder compositions did not significantly impact the compressive strengths. However, it facilitated mitigating shrinkage/expansion strains through micro-confinement in both binary and ternary binders. This research bolsters the feasibility of producing ambient cured powder-based cement-free binders and fiber-reinforced, strain-hardening composites incorporating binary/ternary combinations of SCMs with desired fresh and hardened properties.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1797
Author(s):  
Nguyen Thi Linh Tuyen ◽  
Le Quan Nghiem ◽  
Nguyen Duc Tuan ◽  
Phuoc Huu Le

The development of new drugs that combine active ingredients for the treatment hypertension is critically essential owing to its offering advantages for both patients and manufacturers. In this study, for the first time, detailed development of a scalable process of film-coated bi-layer tablets containing sustained-release metoprolol succinate and immediate-release amlodipine besylate in a batch size of 10,000 tablets is reported. The processing parameters of the manufacturing process during dry mixing-, drying-, dry mixing- completion stages were systematically investigated, and the evaluation of the film-coated bi-layer tablet properties was well established. The optimal preparation conditions for metoprolol succinate layer were 6 min- dry mixing with a high-speed mixer (120 rpm and 1400 rpm), 30-min drying with a fluid bed dryer, and 5-min- mixing completion at 25 rpm. For the preparation of amlodipine besylate layer, the optimal dry-mixing time using a cube mixer (25 rpm) was found to be 5 min. The average weight of metoprolol succinate layers and bi-layer tablets were controlled at 240–260 mg and 384–416 mg, respectively. Shewhart R chart and X¯ charts of all three sampling lots were satisfactory, confirming that the present scalable process was stable and successful. This study confirms that the manufacturing process is reproducible, robust; and it yields a consistent product that meets specifications.


2021 ◽  
Vol 11 (19) ◽  
pp. 8920
Author(s):  
Dhruv Sood ◽  
Khandaker M. A. Hossain

Ambient cured alkali-activated mortars (AAMs) are developed through the activation of supplementary cementitious materials (SCMs) by powder form reagents with silica sand using a novel dry-mixing method. The fresh state, rheological, compressive strength and microstructural characteristics of eight AAM mixes are comprehensively investigated. The effects of binary/ternary combinations/proportions of SCMs, different combinations/dosages of powder form reagents and the fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2 and Na2O/Al2O3) present in the precursors and the reagents are investigated. The AAM mixes obtained compressive strengths ranging from 34 to 42.6 MPa with initial and final setting times between 122 and 458 min and 215 and 483 min, respectively. The yield stress and viscosity of the mixes decreased with the increase in the slump flow spread. All the mixes demonstrated pseudoplastic behavior. The microstructural analysis revealed the formation of more longer polymeric chains comprising Si-Al linkages in N-C-A-S-H/N-A-S-H gels for reagent one (calcium hydroxide:sodium metasilicate = 1:2.5) mixes, which resulted in a lower slump flow, higher yield stress, higher plastic viscosity and quicker setting times compared to their reagent two (calcium hydroxide:sodium sulfate = 2.5:1) counterparts.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4122
Author(s):  
Marcin Słoma ◽  
Maciej Andrzej Głód ◽  
Bartłomiej Wałpuski

A new era of composite organic materials, nanomaterials, and printed electronics is emerging to the applications of thermoelectric generators (TEGs). Special attention is focused on carbon nanomaterials and conducting polymers, and the possibility to form pastes and inks for various low-cost deposition techniques. In this work, we present a novel approach to the processing of composite materials for screen-printing based on carbon nanotubes (CNTs) and polyaniline (PANI), supported with a dielectric polymer vehicle. Three different types of such tailor-made materials were prepared, with a functional phase consisted of carbon nanotubes and polyaniline composites fabricated with two methods: dry mixing of PANI CNT powders and in situ polymerisation of PANI with CNT. These materials were printed on flexible polymer substrates, exhibiting outstanding mechanical properties. The best parameters obtained for elaborated materials were σ=405.45 S·m−1, S=15.4 μV·K−1, and PF=85.2 nW·m−1K−2, respectively.


2021 ◽  
Author(s):  
D. Sood ◽  
J. Krisht ◽  
K.M.A. Hossain

Sustainability Issues: • Each ton of cement production-one ton of carbon-dioxide, 1 kg of sulphur dioxide (SO2), 2 kg oxides of nitrogen (NOx) and 10 kg dust into the atmosphere (Zhang et al., 2018) • Shortage of Landfill sites Optimum Solution: Geopolymer concrete (GPC)- novel form of concrete, synthesized by the alkali activation of source materials (aluminosilicate rich materials) ( Davidovits, 1991). On Site Feasibility Problems: • Highly corrosive alkaline solution-based reagents • Heat Curing Feasible Solution: Dry Mixing Technique • Powder-based reagents: required in less quantity • Source Materials: aluminosilicate rich materials • No need of heat curing


2021 ◽  
Author(s):  
D. Sood ◽  
J. Krisht ◽  
K.M.A. Hossain

Sustainability Issues: • Each ton of cement production-one ton of carbon-dioxide, 1 kg of sulphur dioxide (SO2), 2 kg oxides of nitrogen (NOx) and 10 kg dust into the atmosphere (Zhang et al., 2018) • Shortage of Landfill sites Optimum Solution: Geopolymer concrete (GPC)- novel form of concrete, synthesized by the alkali activation of source materials (aluminosilicate rich materials) ( Davidovits, 1991). On Site Feasibility Problems: • Highly corrosive alkaline solution-based reagents • Heat Curing Feasible Solution: Dry Mixing Technique • Powder-based reagents: required in less quantity • Source Materials: aluminosilicate rich materials • No need of heat curing


Author(s):  
Priyanka Kailas Borse ◽  
Kiran B. Dhamak

The plethora subscribed in this research is directed towards the process validation of tablet formulation containing Isoniazide and Rifampin. The different process parameters were identified and studied for the tablet formulation batches. Three process validation batches of same size, manufacturing process, equipment and validation criteria was taken. The critical parameter involved in sifting, dry mixing, preparation of granulating agent, wet mixing, wet milling, drying, sizing, lubrication and compression stages were identified and evaluated. The outcome indicated that this process validation data provides high degree of assurance that manufacturing process produces product meeting its predetermined specifications and quality attributes.


2021 ◽  
pp. 0734242X2110047
Author(s):  
Junqing Xu ◽  
Jiaxue Yu ◽  
Wenzhi He ◽  
Juwen Huang ◽  
Junshi Xu ◽  
...  

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Zhong ◽  
Rui Gao ◽  
Bingqing Li ◽  
Zhenliang Yang ◽  
Qiqi Huang ◽  
...  

Large grain UO2 is considered as an accident tolerant fuel with great application potential due to its competitive advantage of good fission gas retention. In this paper, the influence of preparation parameters such as sintering atmosphere, mixing process, powder pretreatment and grain growth additives on the grain size of UO2 is systematically studied. The result shows that the factors mentioned above have different effects on the grain size of UO2. The grain growth of UO2 pellet sintered in oxidizing atmosphere is better than those in reducing atmosphere. The wet mixing process has a significant advantage over the dry mixing process. In addition, the powder pretreatment has little effect on grain growth while the influence of additives plays the main role. Large grain UO2 pellets with uniform grain size up to 150 μm are successfully prepared. Finally, the thermo-physical properties of the pellets are investigated.


Sign in / Sign up

Export Citation Format

Share Document