Analysis on Earthquake Damage of Daxinglu Ramp Bridge in Wenchuan Earthquake

2011 ◽  
Vol 255-260 ◽  
pp. 1003-1006 ◽  
Author(s):  
Guo Hui Zhao ◽  
Yu Min Zhang

Although located in the very low intensity area, the superstructure of Daxinglu Ramp Bridge sustained huge damage in Wenchuan earthquake. The longitudinal displacement of superstructure at the joint was about 400mm, which outdistanced the average displacement of all the other bridges in this area. In this paper, finite element model of the ramp bridge is made by general FEA software and the damage of the ramp bridge is analyzed by using nonlinear dynamic time history method. The results are obtained as follow: (1) the displacements restriction capacity of bearing system is reduced greatly by setting too many movable pot rubber bearings in the bridge. (2) The earthquake record near the bridge site is a typical long period ground motion. The extended natural period of the damaged bridge absorbed more but not less energy from the long period ground motion, which aggravated the damage.

2021 ◽  
Vol 2021.58 (0) ◽  
pp. C042
Author(s):  
Naoto KANAYAMA ◽  
Hiroyuki KIMURA ◽  
Masahiro SEKIMOTO ◽  
Tohru SASAKI

2018 ◽  
Vol 8 (8) ◽  
pp. 1243 ◽  
Author(s):  
Iman Mohseni ◽  
Hamidreza Lashkariani ◽  
Junsuk Kang ◽  
Thomas Kang

This study assessed the structural performance of reinforced concrete (RC) arch bridges under strong ground motion. A detailed three-dimensional finite element model of a 400 m RC arch bridge with composite superstructure and double RC piers was developed and its behavior when subjected to strong earthquakes examined. Two sets of ground motion records were applied to simulate pulse-type near- and far-field motions. The inelastic behavior of the concrete elements was then evaluated via a seismic time history analysis. The concept of Demand to Capacity Ratios (DCR) was utilized to produce an initial estimate of the dynamic performance of the structure, emphasizing the importance of capacity distribution of force and bending moment within the RC arch and the springings and piers of the bridge. The results showed that the earthquake loads, broadly categorized as near- and far-field earthquake loads, changed a number of the bridge’s characteristics and hence its structural performance.


2012 ◽  
Vol 535-537 ◽  
pp. 2012-2016
Author(s):  
Da Feng Gao ◽  
Peng Fei Li ◽  
Lei Wang

Based on the rich previous experimental data, the multi-storey ancient Chinese timber structure shangyou tower of palace style was studied. ANSYS10.0 software was used to establish the finite element models. One finite element model of large wooden frame was established by applying semi-rigid spring element to simulate the joint of mortise-tenon, tou-kung and the connection on column foot in the real wooden structure. The other finite element model of antique building corresponding to the finite element model above was established. The first 10 inherent frequencies and vibrations of the two models were obtained by the method of Block Lanczos with full transient analysis. The model displacement and acceleration time history curves were obtained by taking the two models subjected to El-Centro ground motion, Taft ground motion and Lanzhou artificial ground motion excitation. By the results analysis of the two models, it can be find that the vibration isolation performance of the ancient Chinese timber structure mainly manifests in the column foot, tenon and mortise connection and the tou-kung layer.


Author(s):  
Keisuke Minagawa ◽  
Satoshi Fujita

Since the Hanshin-Awaji Earthquake Disaster, the number of isolated structures has been greatly increased. The natural period of the isolation system is designed around 3 seconds, because predominate period of observed seismic waves is usually 0.1 to 1 second. However, relatively long period seismic waves have been observed in various earthquakes, and the resonance of long-period structures, such as high-rise buildings, during earthquakes have been reported at the same time. Therefore the natural period needs to be extended. When extending the natural period of the isolated structure using rubber bearings, its stiffness needs to be reduced. It is more difficult to extend the natural period of the isolation system than the conventional system because of its buckling problem. Therefore we propose a super-long-period active seismic isolation system as a new method for extending the natural period of the isolated structure. This system consists of rubber bearings and actuators. In this study, we designed a control system by using the model-matching-method. This is one of the classical control system design methods. We investigated the isolation performance by numerical analysis. In addition, we selected the optimal variables of transfer function using genetic algorithm.


Author(s):  
Hideo Takabatake ◽  
Yukihiko Kitada ◽  
Izuru Takewaki ◽  
Akiko Kishida

Author(s):  
Chunfeng Li ◽  
Zhuo Lin ◽  
Hanliang Zhang ◽  
Qingmin Yan ◽  
Tianshe She ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document