Simplified Procedure for Progressive Collapse Analysis of Steel Structures

2011 ◽  
Vol 255-260 ◽  
pp. 482-486
Author(s):  
Arash Naji ◽  
Fereidoon Irani

Progressive collapse refers to a phenomenon in which a local damage of a primary structural element leads to the failure of partial or whole structural system. To investigate the progressive collapse of structures, nonlinear dynamic procedure leads to more accurate results than static procedures. Nonlinear dynamic procedure is very complicated and the evaluation or validation of its results may be very time-consuming. Therefore using simplified methods are very important. This paper presents a simplified and accurate analysis procedure for progressive collapse analysis of steel structures. The proposed method results show to have good agreement with nonlinear dynamic analysis results. Also, the capacity curve obtained from dividing the accumulated area under the nonlinear static load-displacement curve by the corresponding displacement of the column-removed point is used to predict the progressive collapse resistance of the column-removed structure.

2012 ◽  
Vol 166-169 ◽  
pp. 164-167 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Jing Xuan Wang ◽  
Wen Da Wang

This paper presented a progressive collapse analysis of spatial composite frame with concrete-filled steel tubular (CFST) columns. A typical finite element analysis (FEA) model of a 12-story building was established by using ABAQUS. The shell elements were used to simulate the slab, and all of the steel beams and CFST columns were simulated by the beam elements incorporating nonlinear material and geometric, respectively. Nonlinear dynamic analysis was carried out for the sudden loss of columns for different scenarios of column removal, and the capacity of progressive collapse resistance of the 3-D composite frame and other components internal force around the removed column were investigated.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shan Gao ◽  
Sheliang Wang

As the antenna-supporting structures, latticed telecommunication steel towers are considered as critical members of telecommunication infrastructures. It is necessary to perform progressive collapse analysis of lattice telecommunication towers under wind loads. The present study conducts a nonlinear dynamic analysis on 50 m high typical standard latticed telecommunication tripole tower and angle tower by alternative load path method. The finite element models for two towers subjected to design wind loads are developed by ABAQUS. The analysis results show that, for 50 m high standard tripole tower, the member failure in the first three tower sections from tower top would not trigger the collapse of the tower. From the fourth tower section to tower bottom, the member failure at certain wind direction may cause a collapse. For 50 m high standard angle tower, the single member failure in any tower section would not cause the collapse of the tower. A dynamic sensitivity index is proposed to identify the most unfavorable wind direction for tripole tower and angle tower. A progressive collapse fragile curve based on collapse probability of telecommunication tower under wind loads is proposed to assess the anticollapse performance of the towers.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 405
Author(s):  
Andrey Nikolaevich Dmitriev ◽  
Vladimir Vladimirovich Lalin

Progressive collapse is the failure of the whole structure caused by local damage, which leads to significant economic and human losses. Therefore, structures should be designed to sustain local failures and resist subsequent nonproportional damage. This paper compared four procedures for a progressive collapse analysis of two RC structures subjected to a corner column loss scenario. The study is mainly based on the methods outlined in the current Russian standard (linear static (LS) pulldown, nonlinear static (ND) pulldown, and nonlinear dynamic), but also includes LS and NS pushdown procedures suggested by the American guidelines and linear dynamic procedure. We developed detailed finite element models for ANSYS Mechanical and ANSYS/LS-DYNA simulations, explicitly including concrete and reinforcement elements. We applied the Continuous Surface Cap Model (MAT_CSCM) to account for the physical nonlinearity of concrete. We also validated results obtained following these procedures against known experimental data. Simulations using linear static pulldown and linear dynamic procedures lead to 50–70% lower results than the experimental because they do not account for the nonlinear behavior of concrete and reinforcement. Displacements obtained from the NS pulldown method exceed the test data by 10–400%. It is found that correct results for both RC structures can only be found using a nonlinear dynamic procedure, and the mismatch with the test data do not exceed 7%. Compared to static pulldown methods, LS and NS pushdown methods are more accurate and differ from the experiment by 28% and 14%, respectively. This relative accuracy is provided by more correct load multipliers depending on the structure type.


Sign in / Sign up

Export Citation Format

Share Document