Research of Image Registration Based on Maximum Entropy Template Selection Algorithm

2011 ◽  
Vol 268-270 ◽  
pp. 1138-1143
Author(s):  
Hong Ying Qin

This paper concerns an improved adaptive genetic algorithm, and the method is applied to the Maximum Entropy Template Selection Algorithm image registration. This method includes adjusting the probability of crossover and mutation in the evolutionary process. The method can overcome the disadvantage of traditional genetic algorithm that is easy to get into a local optimum answer. Results show our method is insensitive to the ordering, rotation and scale of the input images so it can be used in image stitching and retrieval of images & videos.

2011 ◽  
Vol 328-330 ◽  
pp. 54-57
Author(s):  
Heng Hui Sun ◽  
Min Zhou Luo ◽  
Xiang Dong ◽  
Shi Hong Zha

In this paper, a new optimizing method for the moments of inertia of a mechanical structure was advanced. First, a new optimal model for the moments of inertia was advanced, which only involved with single objective and single variable, in order to reduce the calculating complexity of traditional multi-objective and multi-constrained optimizing model for the moments of inertia; Then, a new strategy for the probability selection of the crossover and mutation operation was improved to form the IAGA. The calculating results proved that, comparing to the Standard Genetic Algorithm (SGA), the IAGA improved in this paper had the advantage of converging faster, more powerfully searching, and less possible of falling into the local optimum. By that, the feasibility of the method advanced in this paper was demonstrated.


2014 ◽  
Vol 538 ◽  
pp. 193-197
Author(s):  
Jian Jiang Su ◽  
Chao Che ◽  
Qiang Zhang ◽  
Xiao Peng Wei

The main problems for Genetic Algorithm (GA) to deal with the complex layout design of satellite module lie in easily trapping into local optimality and large amount of consuming time. To solve these problems, the Bee Evolutionary Genetic Algorithm (BEGA) and the adaptive genetic algorithm (AGA) are introduced. The crossover operation of BEGA algorithm effectively reinforces the information exploitation of the genetic algorithm, and introducing random individuals in BEGA enhance the exploration capability and avoid the premature convergence of BEGA. These two features enable to accelerate the evolution of the algorithm and maintain excellent solutions. At the same time, AGA is adopted to improve the crossover and mutation probability, which enhances the escaping capability from local optimal solution. Finally, satellite module layout design based on Adaptive Bee Evolutionary Genetic Algorithm (ABEGA) is proposed. Numerical experiments of the satellite module layout optimization show that: ABEGA outperforms SGA and AGA in terms of the overall layout scheme, enveloping circle radius, the moment of inertia and success rate.


2013 ◽  
Vol 753-755 ◽  
pp. 2925-2929
Author(s):  
Xiao Chun Zhu ◽  
Jian Feng Zhao ◽  
Mu Lan Wang

This paper studies the scheduling problem of Hybrid Flow Shop (HFS) under the objective of minimizing makespan. The corresponding scheduling simulation system is developed in details, which employed a new encoding method so as to guarantee the validity of chromosomes and the convenience of calculation. The corresponding crossover and mutation operators are proposed for optimum sequencing. The simulation results show that the adaptive Genetic Algorithm (GA) is an effective and efficient method for solving HFS Problems.


2014 ◽  
Vol 540 ◽  
pp. 456-459
Author(s):  
Hu Cheng Zhao ◽  
Hao Lin Cui ◽  
Zhi Bin Chen

To obtain the improvement of analog circuit fault diagnosis, a RBF diagnosis model based on an Adaptive Genetic Algorithm (AGA) is proposed. First an adaptive mechanism about crossover and mutation probability is introduced into the traditional genetic algorithm, and then AGA algorithm is used to optimize the network parameters such as center, width and connection weight. The experiment simulation indicates that the proposed model has exact diagnosis characteristic.


2020 ◽  
Author(s):  
Egidio De Carvalho Ribeiro Júnior ◽  
Omar Andres Carmona Cortes ◽  
Osvaldo Ronald Saavedra

The purpose of this paper is to propose a parallel genetic algorithm that has adaptive and self-adaptive characteristics at the same time for solving the Dynamic Economic Dispatch (DED) problem that is a challenging problem to solve. The algorithm selects the proper operators (using adaptive features) and probabilities (using the self-adaptive code) that produce the most fittable individuals. Regarding operations, the choice is made between four different types of crossover: simple, arithmetical, non-uniform arithmetical, and linear. Concerning mutation, we used four types of mutations (uniform, non-uniform, creep, and enhanced apso). The choice is made scholastically, which is uniform at the beginning of the algorithm, being adapted as the AG  executes. The crossover and mutation probabilities are coded into the genes, transforming this part of the algorithm into self-adaptive. The multicore version was coded using OpenMP. An ANOVA test, along with a Tukey test, proved that the mixed self-adaptive algorithm works better than both: a random algorithm, which chooses operators randomly, and a combination of operators set previously in the DED optimization. Regarding the performance of the parallel approach, results have shown that a speedup of up to 3.19 can be reached with no loss in the quality of solutions.


Author(s):  
Slimane Abou-Msabah ◽  
Ahmed-Riadh Baba-Ali ◽  
Basma Sager

The orthogonal cutting-stock problem tries to place a given set of items in a minimum number of identically sized bins. Combining the new BLF2G heuristic with an advanced genetic algorithm can help solve this problem with the guillotine constraint. According to the item order, the BLF2G heuristic creates a direct placement of items in bins to give a cutting format. The genetic algorithm exploits the search space to find the supposed optimal item order. Other methods try to guide the evolutionary process. A new enhancement guides the evolutionary process, enriching the population via qualified individuals, without disturbing the genetic phase. The evolution of the GA process is controlled, and when no improvements after some number of iterations are observed, a qualified individual is injected to the population to avoid premature convergence to a local optimum. A generated set of order-based individuals enriches the evolutionary process with qualified chromosomes. The proposed method is compared with other heuristics and metaheuristics found in the literature on existing data sets.


2011 ◽  
Vol 219-220 ◽  
pp. 1578-1583
Author(s):  
Shuang Zhang ◽  
Qing He Hu ◽  
Xing Wei Wang

The paper studies transformer optimal design, establishes optimal transformer model based on total owning cost. It adopts penalty function to process objective function with weighted coefficients. For prematurity and low speed of convergence of Simple Genetic Algorithm, improved adaptive genetic algorithm is adopted. It increases crossover and mutation rates, and improves fitness function. It is adopted to search for minimum total owning cost of transformer. The result shows that the algorithm performs well, increases converging speed and betters solution.


2014 ◽  
Vol 989-994 ◽  
pp. 2609-2612
Author(s):  
Zhuo Xu ◽  
Rui Wang ◽  
Zhong Min Wang

In this paper, an analysis of a hybrid two-population genetic algorithm (H2PGA) for the job shop scheduling problem is presented. H2PGA is composed of two populations that constitute of similar fit chromosomes. These two branches implement genetic operation separately using different evolutionary strategy and exchange excellent chromosomes using migration strategy which is acquired by experiments. Improved adaptive genetic algorithm (IAGA) and simulated annealing genetic algorithm (SAGA) are applied in two branches respectively. By integrating the advantages of two techniques, this algorithm has comparatively solved the two major problems with genetic algorithm which are low convergence velocity and potentially to be plunged into local optimum. Experimental results show that the H2PGA outperforms the other three methods for it has higher convergence velocity and higher efficiency.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-feng Dong ◽  
Hong-mei Xia ◽  
Yan-cong Zhou

In the smart home environment, aiming at the disordered and multiple destinations path planning, the sequencing rule is proposed to determine the order of destinations. Within each branching process, the initial feasible path set is generated according to the law of attractive destination. A sinusoidal adaptive genetic algorithm is adopted. It can calculate the crossover probability and mutation probability adaptively changing with environment at any time. According to the cultural-genetic algorithm, it introduces the concept of reducing turns by parallelogram and reducing length by triangle in the belief space, which can improve the quality of population. And the fallback strategy can help to jump out of the “U” trap effectively. The algorithm analyses the virtual collision in dynamic environment with obstacles. According to the different collision types, different strategies are executed to avoid obstacles. The experimental results show that cultural-genetic algorithm can overcome the problems of premature and convergence of original algorithm effectively. It can avoid getting into the local optimum. And it is more effective for mobile robot path planning. Even in complex environment with static and dynamic obstacles, it can avoid collision safely and plan an optimal path rapidly at the same time.


Sign in / Sign up

Export Citation Format

Share Document